The nanoscale contacts, which play a key role in nanotechnology and micro-/nanoelectromechanical systems, are fundamentally important for a wide range of problems including adhesion, contact formation, friction and wear, etc. Because continuum contact mechanics has limitations when it is applied at length of nanoscale, molecular dynamics (MD) simulations, which can investigate internal physical mechanisms of nanostructures by atomic motions in detail, become one of the most promising approaches for investigating mechanical behaviors of contacts in nanoscale. First, contacts between rigid cylindrical probes with different radii and an elastic half-space substrate are studied by using MD simulations with the assistance of the classical Lennard-Jones potential. For contacts without adhesion, the relationship between the applied force and the contact half-width is analyzed. The von Mises stress distributions are then discussed. For contacts with adhesion, the phenomena of the jump-to-contact, the break-off contact, and the hysteresis are observed. The pressure distributions and the von Mises stress contours in the contact region agree with the existing solutions. Second, the effects of the surface topography on adhesive contacts are studied by using MD simulations with the embedded atom method potential. The adhesive contact mechanical characteristic of a series of asperities with different shapes, different sizes, and different numbers on contacting surfaces are discovered and compared. The results show that the surface topography is one of the major factors, which may influence the contact behaviors between the interfaces of nanoscale components.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Hertz
,
H.
, 1882, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
3.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
(
2
), pp.
314
326
.
4.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
324
(
1558
), pp.
301
313
.
5.
Maugis
,
D.
, 1992, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
150
(
1
), pp.
243
269
.
6.
Ding
,
J. N.
, 2001, “
Studies on Mechanical Behaviors of Microfabricated Polysilicon Thin Films and Sticking Problem in MEMS
,” Ph.D. thesis, Tsinghua University, Beijing.
7.
Buldum
,
A.
,
Ciraci
,
S.
, and
Batra
,
I. P.
, 1998, “
Contact, Nanoindentation, and Sliding Friction
,”
Phys. Rev. B
0163-1829,
57
(
4
), pp.
2468
2476
.
8.
Liu
,
T.
,
Liu
,
G.
,
Xie
,
Q.
, and
Wang
,
Q. J.
, 2006, “
An EFG-FE Coupling Method for Microscale Adhesive Contacts
,”
ASME J. Tribol.
0742-4787,
128
(
1
), pp.
40
48
.
9.
Luan
,
B.
, and
Robbins
,
M. O.
, 2005, “
The Breakdown of Continuum Models for Mechanical Contacts
,”
Nature (London)
0028-0836,
435
(
7044
), pp.
929
932
.
10.
Yong
,
C. W.
,
Smith
,
W.
, and
Kendall
,
K.
, 2002, “
Surface Contact Studies of NaCl and TiO2: Molecular Dynamics Simulation Studies
,”
J. Mater. Chem.
0959-9428,
12
(
9
), pp.
2807
2815
.
11.
Yong
,
C. W.
,
Smith
,
W.
, and
Kendall
,
K.
, 2003, “
Molecular Dynamics Simulations of (001) MgO Surface Contacts: Effects of Tip Structures and Surface Matching
,”
Nanotechnology
0957-4484,
14
(
8
), pp.
829
839
.
12.
VanLandingham
,
M. R.
,
Juliano
,
T. F.
, and
Hagon
,
M. J.
, 2005, “
Measuring Tip Shape for Instrumented Indentation Using Atomic Force Microscopy
,”
Meas. Sci. Technol.
0957-0233,
16
(
11
), pp.
2173
2185
.
13.
Grybos
,
J.
,
Pyka-Fosciak
,
G.
,
Lebed
,
K.
,
Lekka
,
M.
,
Stachura
,
Z.
, and
Styczen
,
J.
, 2004, “
Study of Adhesion Interaction Using Atomic Force Microscopy
,”
Acta Phys. Pol. A
0587-4246,
105
(
5
), pp.
501
510
.
14.
Cuenot
,
S.
,
Fretigny
,
C.
,
Demoustier-Champagne
,
S.
, and
Nysten
,
B.
, 2004, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
69
(
16
), pp.
165410
.
15.
Hu
,
S. Q.
, and
Raman
,
A.
, 2006, “
Chaos in Atomic Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
96
(
3
), pp.
036107
.
16.
Landman
,
U.
,
Luedtke
,
W. D.
,
Burnham
,
N. A.
, and
Colton
,
R. J.
, 1990, “
Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture
,”
Science
0036-8075,
248
(
4954
), pp.
454
461
.
17.
Kendall
,
K.
,
Yong
,
C. W.
, and
Smith
,
W.
, 2004, “
Particle Adhesion at the Nanoscale
,”
J. Adhes.
,
80
(
1
), pp.
21
36
. 0021-8464
18.
Cha
,
P. R.
,
Srolovitz
,
D. J.
, and
Vanderlick
,
T. K.
, 2004, “
Molecular Dynamics Simulation of Single Asperity Contact
,”
Acta Mater.
1359-6454,
52
(
13
), pp.
3983
3996
.
19.
Lynden-Bell
,
R. M.
, 1994, “
Computer Simulations of Fracture at the Atomic Level
,”
Science
0036-8075,
263
(
5154
), pp.
1704
1705
.
20.
Hsu
,
Q. C.
,
Wu
,
C. D.
, and
Fang
,
T. H.
, 2005, “
Studies on Nanoimprint Process Parameters of Copper by Molecular Dynamics Analysis
,”
Comput. Mater. Sci.
,
34
(
4
), pp.
314
322
. 0927-0256
21.
Trevethan
,
T.
, and
Kantorovich
,
L.
, 2005, “
Molecular Dynamics Simulations of Atomic Scale Processes at Close Approach in Non-Contact Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
16
(
3
), pp.
S79
S84
.
22.
Ogata
,
S.
,
Mitsuya
,
Y.
,
Zhang
,
H. D.
, and
Fukuzawa
,
K.
, 2005, “
Simulations for Nanoscale Meniscus Formation and Rupture by Using Molecular Dynamics
,”
Proceedings of WTC2005
,
World Tribology Congress III
,
Washington, D.C
.
23.
Bat-Uul
,
B.
,
Fujii
,
S.
,
Shiokawa
,
T.
,
Ohzono
,
T.
, and
Fujihira
,
M.
, 2004, “
Molecular Dynamics Simulation of Non-Contact Atomic Force Microscopy of Self-Assembled Monolayers on Au (111)
,”
Nanotechnology
0957-4484,
15
(
5
), pp.
710
715
.
24.
Komvopoulos
,
K.
, and
Yan
,
W.
, 1997, “
Molecular Dynamics Simulation of Single and Repeated Indentation
,”
J. Appl. Phys.
0021-8979,
82
(
10
), pp.
4823
4830
.
25.
Miesbauer
,
O.
,
Gotzinger
,
M.
, and
Peukert
,
W.
, 2003, “
Molecular Dynamics Simulations of the Contact Between Two NaCl Nano-Crystals: Adhesion, Jump to Contact and Indentation
,”
Nanotechnology
,
14
(
3
), pp.
371
376
. 0957-4484
26.
Leng
,
Y. S.
,
Yang
,
G. P.
,
Hu
,
Y. Z.
, and
Zheng
,
L. Q.
, 2000, “
Computer Experiments on Nano-Indentation: A Molecular Dynamics Approach to the Elasto-Plastic Contact of Metal Copper
,”
J. Mater. Sci.
0022-2461,
35
(
8
), pp.
2061
2067
.
27.
Israelachvili
,
J. N.
, 1992,
Intermolecular and Surface Forces
,
Academic
,
New York
.
28.
Williams
,
J. A.
, and
Le
,
H. R.
, 2006, “
Tribology and MEMS
,”
J. Phys. D
0022-3727,
39
(
12
), pp.
R201
R214
.
29.
Delrio
,
F. W.
,
De Boer
,
M. P.
,
Knapp
,
J. A.
,
Reedy
,
E. D.
,
Clews
,
P. J.
, and
Dunn
,
M. L.
, 2005, “
The Role of van der Waals Forces in Adhesion of Micromachined Surfaces
,”
Nature Mater.
1476-1122,
4
(
8
), pp.
629
634
.
30.
Israelachvili
,
J.
,
Maeda
,
N.
,
Rosenberg
,
K. J.
, and
Akbulut
,
M.
, 2005, “
Effects of Sub-Angstrom (Pico-Scale) Structure of Surfaces on Adhesion, Friction, and Bulk Mechanical Properties
,”
J. Mater. Res.
0884-2914,
20
(
8
), pp.
1952
1972
.
31.
Zou
,
M.
,
Wang
,
H.
,
Larson
,
P. R.
,
Hobbs
,
K. L.
,
Johnson
,
M. B.
, and
Awitor
,
O. K.
, 2006, “
Ni Nanodot-Patterned Surfaces for Adhesion and Friction Reduction
,”
Tribol. Lett.
1023-8883,
24
(
2
), pp.
137
142
.
32.
Wang
,
H.
,
Cai
,
L.
,
Yang
,
D.
,
Wyrobek
,
T.
, and
Zou
,
M.
, 2005, “
Selective Surface Nano/Micro-Texturing by UV Assisted Low Temperature Crystallization of Amorphous Silicon
,”
Proceeding of WTC2005
,
World Tribology Congress III
,
Washington, D.C
, pp.
913
914
.
33.
Wang
,
H.
,
Cai
,
L.
,
Yang
,
D.
,
Wyrobek
,
T.
, and
Zou
,
M.
, 2005, “
Adhesion/Stiction and Friction Studies of Nano/Micro-Textured Surfaces Produced by Crystallization of Amorphous Silicon
,”
Proceeding of WTC2005
,
World Tribology Congress III
,
Washington, D.C
, pp.
415
416
.
34.
Wu
,
H. A.
,
Liu
,
G. R.
, and
Wang
,
J. S.
, 2004, “
Atomistic and Continuum Simulation on Extension Behaviour of Single Crystal With Nano-Holes
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
(
2
), pp.
225
233
.
35.
Doyama
,
M.
, and
Kogure
,
Y.
, 1999, “
Embedded Atom Potentials in Fcc and Bcc Metals
,”
Comput. Mater. Sci.
0927-0256,
14
(
1–4
), pp.
80
83
.
36.
Yu
,
N.
, and
Polycarpou
,
A. A.
, 2004, “
Adhesive Contact Based on the Lennard-Jones Potential: A Correction to the Value of the Equilibrium Distance as Used in the Potential
,”
J. Colloid Interface Sci.
0021-9797,
278
(
2
), pp.
428
435
.
37.
Hoekstra
,
J.
,
Yan
,
H.
, and
Kalonji
,
G.
, 1994, “
Structural Variations in Strained Crystalline Multilayers
,”
J. Mater. Res.
,
9
(
8
), pp.
2190
2197
. 0884-2914
38.
Allen
,
N. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford, UK
.
39.
Rapaport
,
D. C.
, 1995,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge, UK
.
40.
Agrawal
,
P. M.
,
Rice
,
B. M.
, and
Thompson
,
D. L.
, 2002, “
Predicting Trends in Rate Parameters for Self-Diffusion on FCC Metal Surfaces
,”
Surf. Sci.
0039-6028,
515
(
1
), pp.
21
35
.
41.
Guan
,
P.
,
Mckenzie
,
D. R.
, and
Pailthorpe
,
B. A.
, 1996, “
MD Simulations of Ag Film Growth Using the Lennard-Jones Potential
,”
J. Phys.: Condens. Matter
0953-8984,
8
(
45
), pp.
8753
8762
.
42.
Qi
,
W. H.
,
Wang
,
M. P.
, and
Hu
,
W. Y.
, 2004, “
Calculation of the Cohesive Energy of Metallic Nanoparticles by the Lennard-Jones Potential
,”
Mater. Lett.
0167-577X,
58
(
11
), pp.
1745
1749
.
43.
Paskin
,
A.
, and
Gohar
,
A.
, 1980, “
Computer Simulation of Crack Propagation
,”
Phys. Rev. Lett.
0031-9007,
44
(
14
), pp.
940
943
.
44.
Morrey
,
W. C.
, and
Wille
,
L. T.
, 1996, “
Large-Scale Molecular Dynamics Simulation of Fracture Growth in Alloys
,”
Mater. Sci. Eng., B
,
37
(
1–3
), pp.
181
184
. 0921-5107
45.
Ghazali
,
A.
, and
Levy
,
J. C. S.
, 2001, “
Low Temperature Pb Deposits on Cu(001): Monte Carlo Structural Studies
,”
Surf. Sci.
,
486
(
1–2
), pp.
33
45
. 0039-6028
46.
Guan
,
P.
,
Mckenzie
,
D. R.
, and
Paithorpe
,
B. A.
, 1997, “
Patterns of Energy Dissipation in Three-Dimensional Face-Centred Cubic Lattices After Ion Impact
,”
J. Phys.: Condens. Matter
0953-8984,
9
(
23
), pp.
5015
5026
.
47.
Tan
,
S.
,
Ghazali
,
A.
, and
Levy
,
J. C. S.
, 1997, “
Pb/Cu(100) Surface Superstructures: Monte Carlo and Molecular Dynamics Simulations
,”
Surf. Sci.
0039-6028,
392
(
1–3
), pp.
163
172
.
48.
Verlet
L.
, 1967, “
Computer ‘Experiments’ on Classical Fluids I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
0031-899X,
159
(
1
), pp.
98
103
.
49.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
, 1982, “
Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
0021-9606,
76
(
1
), pp.
637
649
.
50.
Schiotz
,
J.
,
Vegge
,
T.
,
Tolla
,
F. D. D.
, and
Jacobsen
,
K. W.
, 1999, “
Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals
,”
Phys. Rev. B
0163-1829,
60
(
17
), pp.
11971
11983
.
51.
Ray
,
J. R.
, and
Rahman
,
A.
, 1984, “
Statistical Ensembles and Molecular Dynamics Studies of Anisotropic Solids
,”
J. Chem. Phys.
0021-9606,
80
(
9
), pp.
4423
4428
.
52.
Ray
,
J. R.
, and
Rahman
,
A.
, 1985, “
Statistical Ensembles and Molecular Dynamics Studies of Anisotropic Solids II
,”
J. Chem. Phys.
0021-9606,
82
(
9
), pp.
4243
4247
.
53.
Varnik
,
F.
,
Baschnagel
,
J.
, and
Binder
,
K.
, 2000, “
Molecular Dynamics Results on the Pressure Tensor of Polymer Films
,”
J. Chem. Phys.
0021-9606,
113
(
10
), pp.
4444
4453
.
54.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
, 1986, “
Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
0163-1829,
33
(
12
), pp.
7983
7991
.
55.
Simons
,
G.
, and
Wang
,
H.
, 1977,
Single Crystal Elastic Constants and Calculated Aggregate Properties
,
MIT
,
Cambridge, MA
.
You do not currently have access to this content.