With the increased use of hard disk drives (HDDs) in mobile and consumer applications combined with the requirement of higher areal density, there is enhanced focus on reducing head disk spacing, and consequently there is higher susceptibility of slider/disk impact damage during HDD operation. To investigate this impact process, a dynamic elastic-plastic finite element model of a sphere (representing a slider corner) obliquely impacting a thin-film disk was created to study the effect of the slider corner radius and the impact velocity on critical contact parameters. To characterize the energy losses due to the operational shock impact damage, the coefficient of restitution for oblique elastic-plastic impact was studied using the finite element model. A modification to an existing physics-based elastic-plastic oblique impact coefficient of restitution model was proposed to accurately predict the energy losses for a rigid sphere impacting a half-space. The analytical model results compared favorably to the finite element results for the range from low impact angles (primarily normal impacts) to high impact angles (primarily tangential impacts).

1.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Hanchi
,
J. V.
, and
Roy
,
M.
, 2009, “
Analytical and Experimental Elastic-Plastic Impact Analysis of Magnetic Storage Head-Disk Interfaces
,”
ASME J. Tribol.
0742-4787,
131
(
1
), p.
011902
.
2.
Suk
,
M.
,
Dennig
,
P.
, and
Gillis
,
D.
, 2000, “
Magnetic Erasures Due to Impact Induced Interfacial Heating and Magnetostriction
,”
ASME J. Tribol.
0742-4787,
122
, pp.
264
268
.
3.
Liu
,
B.
, and
Ma
,
Y.
, 2003, “
Visualization and Characterization of Slider-Disk Interactions in Dynamic Load/Unload Processes
,”
IEEE Trans. Magn.
0018-9464,
39
, pp.
743
748
.
4.
Suk
,
M.
, and
Gillis
,
D.
, 1998, “
Effect of Slider Burnish on Disk Damage During Dynamic Load/Unload
,”
ASME J. Tribol.
0742-4787,
120
, pp.
332
338
.
5.
Polycarpou
,
A. A.
,
Hipwell
,
M. C.
, and
Boutaghou
,
Z. E.
, 1999, “
Edge Structure for Slider-Disc Interface and Method of Manufacture Therefore
,” U.S. Patent No. 6,542,334.
6.
Fu
,
T. -C.
, and
Bogy
,
D. B.
, 2000, “
Analysis of Stresses Induced by Dynamic Load Head-Disk Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
233
237
.
7.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
New York
.
8.
Yu
,
N.
,
Polycarpou
,
A. A.
, and
Hanchi
,
J. V.
, 2007, “
Elastic Contact Mechanics-Based Contact and Flash Temperature Analysis of Impact-Induced Head Disk Interface Damage
,”
Microsyst. Technol.
0946-7076,
14
, pp.
215
227
.
9.
Yu
,
N.
, 2005, “
Nanotribology and Nanomechanics Including Nanomechanical Properties, Adhesion and Surface Roughness With Application to Magnetic Storage Hard Disk Drives
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana.
10.
Ye
,
N.
, and
Komvopolous
,
K.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
Microsyst. Technol.
,
123
, pp.
632
640
. 0946-7076
11.
Benson
,
R. C.
, and
Talke
,
F. E.
, 1987, “
The Transition Between Sliding and Flying of a Magnetic Recording Slider
,”
IEEE Trans. Magn.
0018-9464,
23
, pp.
3441
3443
.
12.
Ponnaganti
,
V.
,
Kane
,
T. R.
, and
White
,
J. W.
, 1987, “
Dynamics of Head-Disk Contact/Impact in Magnetic Recording
,”
IEEE Trans. Magn.
0018-9464,
23
, pp.
3435
3437
.
13.
Adams
,
G. G.
, 1993, “
Impact Dynamics and the Coefficient of Restitution for the Eccentric Collision of a Slider Onto a Disk
,”
Adv. Inf. Storage Syst.
1053-184X,
5
, pp.
297
310
.
14.
Adams
,
G. G.
, and
Tran
,
D. N.
, 1993, “
The Coefficient of Restitution for a Planar Two-Body Eccentric Impact
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
1058
1060
.
15.
Hunter
,
S. C.
, 1957, “
Energy Absorbed by Elastic Waves During Impact
,”
J. Mech. Phys. Solids
0022-5096,
5
, pp.
162
171
.
16.
Tabor
,
D.
, 1951,
Hardness of Metals
,
Oxford University Press
,
Oxford
.
17.
Goldsmith
,
W.
, 1960,
Impact: The Theory and Physical Behavior of Colliding Solids
,
Edward Arnold
,
London
.
18.
Chang
,
W. -R.
, and
Ling
,
F. F.
, 1992, “
Normal Impact Model of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
114
, pp.
439
447
.
19.
Thornton
,
C.
, 1997, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
383
386
.
20.
Zhang
,
X.
, and
Vu-Quoc
,
L.
, 2002, “
Modeling the Dependence of Coefficient of Restitution on Impact Velocity in Elasto-Plastic Collisions
,”
Int. J. Impact Eng.
0734-743X,
27
, pp.
317
341
.
21.
Wu
,
C. -Y.
,
Thornton
,
C.
, and
Li
,
L. -Y.
, 2003, “
Coefficients of Restitution for Elastoplastic Oblique Impacts
,”
Adv. Powder Technol.
0921-8831,
14
, pp.
435
448
.
22.
2007, ABAQUS™, Version 6.6, Dassault Systemes S.A.
23.
Kato
,
T.
,
Kawaguchi
,
M.
,
Sajjad
,
M. M.
, and
Choi
,
J.
, 2004, “
Friction and Durability Characteristics of Ultrathin Perfluoropolyether Lubricant Composed of Bonded and Mobile Molecular Layers on Diamond-Like Carbon Surfaces
,”
Wear
0043-1648,
257
, pp.
909
915
.
24.
Hamilton
,
G. M.
, 1983, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
197
, pp.
53
59
.
You do not currently have access to this content.