The relative motion between two surfaces under a normal load is impeded by friction. Interfacial junctions are formed between surfaces of asperities, and sliding inception occurs when shear tractions in the entire contact area reach the shear strength of the weaker material and junctions are about to be separated. Such a process is known as a static friction mechanism. The numerical contact model of dissimilar materials developed by the authors is extended to evaluate the maximum tangential force (in terms of the static friction coefficient) that can be sustained by a rough surface contact. This model is based on the Boussinesq–Cerruti integral equations, which relate surface tractions to displacements. The materials are assumed to respond elastic perfectly plastically for simplicity, and the localized hardness and shear strength are set as the upper limits of contact pressure and shear traction, respectively. Comparisons of the numerical analysis results with published experimental data provide a validation of this model. Static friction coefficients are predicted for various material pairs in contact first, and then the behaviors of static friction involving rough surfaces are extensively investigated.

1.
Arnell
,
R. D.
,
Davies
,
P. B.
,
Halling
,
J.
, and
Whomes
,
T. L.
, 1991,
Tribology, Principles and Design Applications
,
Springer-Verlag
,
New York
.
2.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1950,
The Friction and Lubrication of Solids
,
Oxford University Press
,
Oxford
.
3.
Tabor
,
D.
, 1981, “
Friction—The Present State of Our Understanding
,”
ASME J. Lubr. Technol.
0022-2305,
103
, pp.
169
179
.
4.
Paslay
,
P. R.
, and
Plunkett
,
R.
, 1953, “
Design of Shirk-Fits
,”
Trans. ASME
0097-6822,
75
, pp.
1199
1202
.
5.
Rabinowicz
,
E.
, 1986, “
The Tribology of Magnetic Recording Systems–An Overview
,”
Tribology and Mechanics of Magnetic Storage Systems
(
SP-21
),
ASLE
,
Park Ridge
, Vol.
3
, pp.
1
7
.
6.
Etsion
,
I.
, and
Amit
,
M.
, 1993, “
The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces
,”
ASME J. Tribol.
0742-4787,
115
, pp.
406
410
.
7.
Etsion
,
I.
,
Levinson
,
O.
,
Halperin
,
G.
, and
Varenberg
,
M.
, 2005, “
Experimental Investigation of the Elastic-Plastic Contact Area and Static Friction of a Sphere on Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
47
50
.
8.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
, 2008, “
Experimental Study of Adhesive Static Friction in a Spherical Elastic-Plastic Contact
,”
ASME J. Tribol.
0742-4787,
130
, pp.
021401
.
9.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
, 2008, “
In Situ and Real-Time Optical Investigation of Junction Growth in Spherical Elastic-Plastic Contact
,”
Wear
0043-1648,
264
, pp.
1043
1050
.
10.
Nolle
,
H.
, and
Richardson
,
R. S. H.
, 1974, “
Static Friction Coefficients for Mechanical and Structural Joints
,”
Wear
0043-1648,
28
, pp.
1
13
.
11.
Liu
,
X.
,
Chetwynd
,
D. G.
, and
Gardner
,
J. W.
, 1998, “
Surface Characterisation of Electro-Active Thin Polymeric Film Bearing
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
669
675
.
12.
Jeng
,
Y. -R.
, 1990, “
Experimental Study of the Effects of Surface Roughness on Friction
,”
Tribol. Trans.
1040-2004,
33
(
3
), pp.
402
410
.
13.
Xiao
,
L.
,
Bjorklund
,
S.
, and
Rosen
,
B. G.
, 2007, “
The Influence of Surface Roughness and the Contact Pressure Distribution on Friction in Rolling/Sliding Contacts
,”
Tribol. Int.
0301-679X,
40
, pp.
694
698
.
14.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
London
.
15.
Nowell
,
D.
,
Hills
,
D. A.
, and
Sackfield
,
A.
, 1988, “
Contact of Dissimilar Elastic Cylinders Under Normal and Tangential Loading
,”
J. Mech. Phys. Solids
0022-5096,
36
(
1
), pp.
59
75
.
16.
Spence
,
D. A.
, 1975, “
The Hertz Contact Problem With Finite Friction
,”
J. Elast.
0374-3535,
5
, pp.
297
319
.
17.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2006, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
5736
5749
.
18.
Bjorklund
,
S.
, and
Andersson
,
S.
, 1994, “
A Numerical Method for Real Elastic Contacts Subjected to Normal and Tangential Loading
,”
Wear
0043-1648,
179
, pp.
117
122
.
19.
Chen
,
W. W.
, and
Wang
,
Q.
, 2008, “
A Numerical Model for the Point Contact of Dissimilar Materials Considering Tangential Tractions
,”
Mech. Mater.
,
40
, pp.
936
948
. 0167-6636
20.
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elstici: Distribuzione Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
342
348
. 0167-6636
21.
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elstici: Distribuzione Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
434
436
. 0167-6636
22.
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elstici: Distribuzione Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
474
478
. 0167-6636
23.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
. 0021-8936
24.
Hamilton
,
G. M.
, 1983, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
197
, pp.
53
59
.
25.
Munisamy
,
R. L.
, and
Hills
,
D. A.
, 1992, “
A Numerical Analysis of an Elastically Dissimilar Three-Dimensional Sliding Contact
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
206
, pp.
203
211
.
26.
Liu
,
S. B.
, and
Wang
,
Q.
, 2002, “
Study Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
0742-4787,
124
, pp.
36
45
.
27.
Boucly
,
V.
,
Nelias
,
D.
, and
Green
,
I.
, 2007, “
Modeling of the Rolling and Sliding Contact Between Two Asperities
,”
ASME J. Tribol.
0742-4787,
129
, pp.
235
245
.
28.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
, 2007, “
A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
129
, pp.
761
771
.
29.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2006, “
Elastic-Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
1023-8883,
25
, pp.
61
70
.
30.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2007, “
A Model for Junction Growth of a Spherical Contact Under Full Stick Condition
,”
ASME J. Tribol.
0742-4787,
129
, pp.
783
790
.
31.
Chen
,
W. W.
,
Wang
,
Q.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
, 2008, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
021021
.
32.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
57
63
. 0742-4787
33.
Tayebi
,
N.
, and
Polycarpou
,
A. A.
, 2004, “
Modeling the Effect of Skewness and Kurtosis on the Static Friction Coefficient of Rough Surfaces
,”
Tribol. Int.
0301-679X,
37
, pp.
491
505
.
34.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
0742-4787,
125
, pp.
499
506
.
35.
Kogut
,
L.
, and
Etsion
,
I.
, 2004, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
34
40
.
36.
Chang
,
L.
, and
Zhang
,
H.
, 2007, “
A Mathematical Model for Frictional Elastic-Plastic Sphere-on-Flat Contacts at Sliding Incipient
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
100
106
.
37.
Tabor
,
D.
, 1959, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London, Ser. A
1364-5021,
251
, pp.
378
393
.
38.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
39.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
40.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
343
354
.
41.
Hu
,
Y. Z.
, and
Tonder
,
K.
, 1992, “
Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
32
, pp.
83
90
.
42.
Munisamy
,
R. L.
,
Hills
,
D. A.
, and
Nowell
,
D.
, 1994, “
Static Axisymmetric Hertzian Contacts Subject to Shearing Forces
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
278
283
.
You do not currently have access to this content.