The effect of dry metallic friction can be attributed to two major mechanisms: adhesion and ploughing. While ploughing is related to severe wear and degradation, adhesion can be connected to pure elastic deformations of the contacting bodies and is thus the predominant mechanism in a stable friction pair. The transmitted friction force is then proportional to the real area of contact. Therefore, a lot of effort has been put into the determination of the fraction of real area of contact under a given load. A broad spectrum of analytical and numerical models has been employed. However, it is quite common to employ the so-called Mindlin assumptions, where the contact area is determined by the normal load only, disregarding the influence of friction. In the subsequent tangential loading, usually the contact pressure distribution is kept fixed such that the coupling between the tangential and normal solutions is neglected. Here, a numerical solution scheme based on elastic halfspace theory for frictional contact problems is presented where full coupling between the normal and tangential tractions and displacements is taken into account. Several examples show the influence of the coupling effects, but also the limitations for the analysis of rough contacts.

1.
Bowden
,
F. P.
, and
Tabor
,
D.
, 2001,
The Friction and Lubrication of Solids
,
Clarendon
,
Oxford
.
2.
Hutchings
,
I. M.
, 1992,
Tribology
,
Arnold
,
London
.
3.
Williams
,
J. A.
, 1994,
Engineering Tribology
,
Oxford Science
,
Oxford
.
4.
Mikic
,
B. B.
, 1971, “
Analytical Studies of Contact of Nominally Flat Surfaces and Effect of Previous Loading
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
451
459
.
5.
Zhuravlev
,
V. A.
, 2007, “
On the Question of Theoretical Justification of the Amontons-Coulomb Law for Friction of Unlubricated Surfaces
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
221
, pp.
893
898
Translation of the 1940 Original Paper in Russian.
6.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
7.
Nayak
,
P. R.
, 1971, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
398
407
.
8.
Onions
,
R. A.
, and
Archard
,
J. F.
, 1973, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D
0022-3727,
6
, pp.
289
304
.
9.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
The Elastic Contact of a Rough Surface
,”
Wear
0043-1648,
35
, pp.
87
111
.
10.
Greenwood
,
J. A.
, 1984, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London, Ser. A
1364-5021,
393
, pp.
133
157
.
11.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
313
327
.
12.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
13.
Warren
,
T. L.
, and
Krajcinovic
,
D.
, 1996, “
Random Cantor Set Models for the Elastic-Perfectly Plastic Contact of Rough Surfaces
,”
Wear
0043-1648,
196
, pp.
1
15
.
14.
Willner
,
K.
, 2000, “
Contact Laws for Rough Surfaces
,”
Z. Angew. Math. Mech.
0044-2267,
80
, pp.
S73
S76
.
15.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
0043-1648,
261
, pp.
1337
1347
.
16.
Greenwood
,
J. A.
, and
Wu
,
J. J.
, 2001, “
Surface Roughness and Contact: An Apology
,”
Meccanica
0025-6455,
36
, pp.
617
630
.
17.
Whitehouse
,
D. J.
, 2001, “
Fractal or Fiction
,”
Wear
0043-1648,
249
, pp.
345
353
.
18.
Greenwood
,
J. A.
, 2002, “
Comments on ‘Fractal or Fiction’ by D. J. Whitehouse
,”
Wear
0043-1648,
252
, pp.
842
843
.
19.
Borodich
,
F. M.
, 2005, “
Analytical Studies of Contact Problems for Fractal Surfaces
,”
Life Cycle Tribology, Proceedings of the 31st Leeds-Lyon Symposium on Tribology
,
Elsevier
, pp.
537
545
.
20.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
387
405
.
21.
Ju
,
Y.
, and
Farris
,
T. N.
, 1996, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
0742-4787,
118
, pp.
320
328
.
22.
Stanley
,
H. M.
, and
Kato
,
T.
, 1997, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
0742-4787,
119
, pp.
481
485
.
23.
Goryacheva
,
I. G.
, 1998,
Contact Mechanics in Tribology
,
Kluwer
,
Dordrecht
.
24.
Hyun
,
S.
,
Pei
,
L.
,
Molinari
,
J.-F.
, and
Robbins
,
M.
, 2004, “
Finite Element Analysis of Contact Between Elastic Self-Affine Surfaces
,”
Phys. Rev. E
1063-651X,
70
, p.
026117
.
25.
Sahoo
,
P.
, and
Gosh
,
N.
, 2007, “
Finite Element Contact Analysis of Fractal Surfaces
,”
J. Phys. D
0022-3727,
40
, pp.
4245
4252
.
26.
Kalker
,
J. J.
, and
van Randen
,
Y.
, 1972, “
A Minimum Principle for Frictionless Elastic Contact With Application to Non-Hertzian Half-Space Contact Problems
,”
J. Eng. Math.
0022-0833,
6
, pp.
193
206
.
27.
Ren
,
N.
, and
Lee
,
S. C.
, 1993, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
0742-4787,
115
, pp.
597
601
.
28.
Poon
,
C. Y.
, and
Sayles
,
R. S.
, 1994, “
Numerical Contact Model of a Smooth Ball on an Anisotropic Rough Surface
,”
ASME J. Tribol.
0742-4787,
116
, pp.
194
201
.
29.
Tian
,
X.
, and
Bhushan
,
B.
, 1996, “
A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
0742-4787,
118
, pp.
33
42
.
30.
Kalker
,
J. J.
,
Dekking
,
F. M.
, and
Vollebregt
,
E. A. H.
, 1997, “
Simulation of Rough, Elastic Contacts
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
361
368
.
31.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 2000, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
0742-4787,
122
, pp.
36
41
.
32.
Lee
,
S. C.
, and
Ren
,
N.
, 1996, “
Behavior of Elastic-Plastic Rough Surface Contacts as Affected by Surface Topography, Load and Material Hardness
,”
Tribol. Trans.
1040-2004,
39
, pp.
67
74
.
33.
Cai
,
S.
, and
Bhushan
,
B.
, 2005, “
A Numerical Three-Dimensional Contact Model for Rough, Multilayered Elastic∕Plastic Solid Surfaces
,”
Wear
0043-1648,
259
, pp.
1408
1423
.
34.
Willner
,
K.
, 2004, “
Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory
,”
ASME J. Tribol.
0742-4787,
126
, pp.
28
33
.
35.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
243
, pp.
190
205
.
36.
Challen
,
J. M.
, and
Oxley
,
P. L. B.
, 1979, “
An Explanation of the Different Regimes of Friction and Wear Using Asperity Deformation Models
,”
Wear
0043-1648,
53
, pp.
229
243
.
37.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. P.
, 1988, “
Adhesion Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
50
56
.
38.
El-Sherbiny
,
M.
, and
Salem
,
F.
, 1984, “
The Role of Surface Roughness on the Friction of Sliding Contacts
,”
Tribol. Int.
0301-679X,
17
, pp.
224
227
.
39.
Willner
,
K.
, and
Gaul
,
L.
, 1997, “
Contact Description by FEM Based on Interface Physics
,”
Proceedings of COMPLAS V
, Barcelona, CIMNE,
D. R. J.
Owen
,
E.
Onate
, and
E.
Hinton
, eds., pp.
884
891
.
40.
Willner
,
K.
, 1999, “
Thermomechanical Coupling in Contact Problems
,”
Computational Methods in Contact Mechanics
,
C.
Brebbia
and
L.
Gaul
, eds.,
WIT Press
,
Southampton
, Vol.
4
, pp.
89
98
.
41.
Kalker
,
J. J.
, 1979, “
The Computation of Three-Dimensional Rolling Contact With Dry Friction
,”
Int. J. Numer. Methods Eng.
0029-5981,
14
, pp.
1293
1307
.
42.
Kalker
,
J. J.
, 1990,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Springer
,
Heidelberg
.
43.
Li
,
J.
, and
Berger
,
E.
, 2001, “
A Boussinesq-Cerutti Solution Set for Constant and Linear Distribution of Normal and Tangential Load Over Triangular Area
,”
J. Elast.
0374-3535,
63
, pp.
137
151
.
44.
Li
,
J.
, and
Berger
,
E.
, 2003, “
A Semi-Analytical Approach to Three-Dimensional Normal Contact Problems With Friction
,”
Comput. Mech.
0178-7675,
30
, pp.
310
322
.
45.
Johnson
,
K. L.
, 1989,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
46.
Vollebregt
,
E. A. H.
, 1995, “
A Gauss-Seidel Type Solver for Special Convex Programs, With Application to Frictional Contact Mechanics
,”
J. Optim. Theory Appl.
0022-3239,
87
, pp.
47
67
.
47.
Spence
,
D. A.
, 1975, “
The Hertz Contact Problem With Finite Friction
,”
J. Elast.
0374-3535,
5
, pp.
297
319
.
48.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
259
268
.
49.
Borri-Brunetto
,
M.
,
Carpinteri
,
A.
, and
Chiaia
,
B.
, 1998, “
Lacunarity of the Contact Domain Between Elastic Bodies With Rough Boundaries
,”
PROBAMAT -21st Century: Probabilities and Materials
,
G.
Frantziskonis
, ed.,
Kluwer
,
Dordrecht
, pp.
45
66
.
50.
Dydo
,
J. R.
, and
Busby
,
H. R.
, 1995, “
Elasticity Solutions for Constant and Linearly Varying Loads Applied to a Rectangular Surface Patch on the Elastic Halfspace
,”
J. Elast.
0374-3535,
38
, pp.
153
163
.
You do not currently have access to this content.