This paper develops a three-dimensional (3D) thermal-structure coupling model, implements transient stress analysis of thermoelastic contact of disk brakes with a frictional heat variation and identifies the source of the thermal fatigue. This thermostructure model allows the analysis of the effects of the moving heat source (the pad) with a variable speed and integrates the heat flux coupling between the sliding surfaces. To obtain the transient stress/temperature fields of the brake under an emergency braking, the thermoelastic problem under this 3D model is solved by the finite element method. The numerical results from the analysis and simulation show the temperature/stress of the disk presenting periodic sharp fluctuation due to the continuous cyclic loading; its varying frequency corresponds to the rotated cycle times of the braking disk. The results demonstrate that the maximum surface equivalent stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk, while a residual tensile hoop stress is incurred on cooling. These results are validated by experimental observation results available in the literature. Based on these numerical results, some suggestions for avoiding fatigue fracture propagation are further presented.

1.
Mackin
,
T. J.
,
Noe
,
S. C.
,
Ball
,
K. J.
,
Bedell
,
B. C.
,
Bim-Merle
,
D. P.
,
Bingaman
,
M. C.
,
Bomleny
,
D. M.
,
Chemlir
,
G. J.
,
Clayton
,
D. B.
,
Evans
,
H. A.
,
Gau
,
R.
,
Hart
,
J. L.
,
Karney
,
J. S.
,
Kiple
,
B. P.
,
Kaluga
,
R. C.
,
Kung
,
P.
,
Law
,
A. K.
,
Lim
,
D.
,
Merema
,
R. C.
,
Miller
,
B. M.
,
Miller
,
T. R.
,
Nielson
,
T. J.
,
O’Shea
,
T. M.
,
Olson
,
M. T.
,
Padilla
,
H. A.
,
Penner
,
B. W.
,
Penny
,
C.
,
Peterson
,
R. P.
,
Polidoro
,
V. C.
,
Raghu
,
A.
,
Resor
,
B. R.
,
Robinson
,
B. J.
,
Schambach
,
D.
,
Snyder
,
B. D.
,
Tom
,
E.
,
Tschantz
,
R. R.
,
Walker
,
B. M.
,
Wasielewski
,
K. E.
,
Webb
,
T. R.
,
Wise
,
S. A.
,
Yang
,
R. S.
, and
Zimmerman
,
R. S.
, 2002, “
Thermal Cracking in Disc Brakes
,”
Eng. Failure Anal.
1350-6307,
9
, pp.
63
76
.
2.
Day
,
A. J.
,
Tirovic
,
M.
, and
Newconb
,
T. P.
, 1991, “
Thermal Effects and Pressure Distributions in Brakes
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
205
, pp.
199
205
.
3.
Anderson
,
A. E.
, and
Knapp
,
R. A.
, 1990, “
Hot Spotting in Automotive Friction Systems
,”
Wear
0043-1648,
135
, pp.
319
337
.
4.
Dufrénoy
,
P.
, and
Weichert
,
D.
, 2003, “
A Thermomechanical Model for the Analysis of Disc Brakes Fracture Mechanism
,”
J. Therm. Stresses
0149-5739,
26
, pp.
815
828
.
5.
Lee
,
K.
, and
Dinwiddie
,
R. B.
, 1998, “
Conditions of Friction Contact in Disk Brakes and Their Effects on Brake Judder
,” SAE Technical Paper No. 980598.
6.
Little
,
E.
,
Kao
,
T. K.
,
Ferdani
,
P.
, and
Hodges
,
T.
, 1998, “
A Dynamometer Investigation of Thermal Judder
,” SAE Technical Paper No. 982252.
7.
Kao
,
T. K.
,
Richmond
,
J. W.
, and
Douarre
,
A.
, 2000, “
Brake Disc Hot Spotting and Thermal Judder: An Experimental and Finite Element Study
,”
Int. J. Veh. Des.
0143-3369,
23
(
3/4
), pp.
276
296
.
8.
Altuzarra
,
O.
,
Amezua
,
E.
,
Avilés
,
R.
, and
Hernández
,
A.
, 2002, “
Judder Vibration in Disc Brakes Excited by Thermoelastic Instability
,”
Eng. Comput.
0264-4401,
19
(
4
), pp.
411
430
.
9.
Panier
,
S.
,
Dufrénoy
,
P.
, and
Weichert
,
D.
, 2004, “
An Experimental Investigation of Hot Spots in Railway Disc Brakes
,”
Wear
0043-1648,
256
, pp.
764
773
.
10.
Panier
,
S.
,
Dufrénoy
,
P.
,
Brunel
,
J. F.
, and
Weichert
,
D.
, 2005, “
Progressive Waviness Distortion: A New Approach of Hot Spotting in Disc Brakes
,”
J. Therm. Stresses
0149-5739,
28
, pp.
47
62
.
11.
Lee
,
K.
, and
Barber
,
J. R.
, 1993, “
Frictionally Excited Thermoelastic Instability in Automotive Disc Brakes
,”
ASME J. Tribol.
0742-4787,
115
, pp.
607
614
.
12.
Lee
,
K.
, and
Barber
,
J. R.
, 1994, “
An Experimental Investigation of Frictionally-excited Thermoelastic Instability in Automotive Disk Brakes Under a Drag Brake Application
,”
ASME J. Tribol.
0742-4787,
116
, pp.
409
414
.
13.
Yi
,
Y. B.
,
Barber
,
J. R.
, and
Zagrodzki
,
P.
, 2000, “
Eigenvalue Solution of Thermoelastic Instability Problems Using Fourier Reduction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
2799
2821
.
14.
Zagrodzki
,
P.
,
Lam
,
K. B.
,
Bahkali
,
E. A.
, and
Barber
,
J. R.
, 2001, “
Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability
,”
ASME J. Tribol.
0742-4787,
123
, pp.
699
708
.
15.
Choi
,
J. H.
, and
Lee
,
I.
, 2003, “
Transient Thermoelastic Analysis of Disk Brakes in Frictional Contact
,”
J. Therm. Stresses
0149-5739,
26
, pp.
223
244
.
16.
Choi
,
J. H.
, and
Lee
,
I.
, 2004, “
Finite Element Analysis of Transient Thermoelastic Behaviors in Disk Brakes
,”
Wear
0043-1648,
257
, pp.
47
58
.
17.
Cho
,
C.
, and
Ahn
,
S.
, 2002, “
Transient Thermoelastic Analysis of Disk Brake Using the Fast Fourier Transform and Finite Element Method
,”
J. Therm. Stresses
0149-5739,
25
, pp.
215
243
.
18.
Gao
,
C. H.
, and
Lin
,
X. Z.
, 2002, “
Transient Temperature Field Analysis of a Brake in a Non-Axisymmetric Three-Dimensional Model
,”
J. Mater. Process. Technol.
0924-0136,
129
, pp.
513
517
.
19.
Lin
,
X. Z.
,
Gao
,
C. H.
, and
Huang
,
J. M.
, 2006, “
The Influence of Braking Conditions to the Transient Temperature Distribution of the Brake Disc
,”
J. Eng. Design
0954-4828,
13
(
1
), pp.
45
48
(in Chinese).
20.
Lu
,
D.
, 1985,
The Analysis and Design of an Automobile Brake System
, Interpreted by
Zhang
,
W. L.
, and
Chen
,
M. Z.
,
China Machine Press
, Beijing.
21.
Xu
,
H.
, 1991,
Handbook of Mechanical Design
,
China Machine Press
, Beijing.
22.
China FAW Group Corporation
, 1998,
Series of Books of China Saloon Cars—-Hongqi
,
Beijing Institute of Technology
, Beijing.
23.
Lee
,
K.
, 2000, “
Frictionally Excited Thermoelastic Instability in Automotive Drum Brakes
,”
ASME J. Tribol.
0742-4787,
122
, pp.
849
855
.
24.
Lee
,
K.
, and
Brooks
, Jr.,
F. M.
, 2003, “
Hot Spotting and Judder Phenomena in Aluminum Drum Brakes
,”
ASME J. Tribol.
0742-4787,
125
, pp.
44
51
.
25.
Thuresson
,
D.
, 2004, “
Influence of Material Properties on Sliding Contact Braking Applications
,”
Wear
0043-1648,
257
, pp.
451
460
.
26.
Dale
,
L. H.
, and
James
,
W. F.
, 2000, “
Effect of Pad/Caliper Stiffness, Pad Thickness, and Pad Length on Thermoelastic Instability in Disc Brakes
,”
ASME J. Tribol.
0742-4787,
122
, pp.
511
518
.
27.
Yamabe
,
J.
,
Takagi
,
M.
,
Matsui
,
T.
,
Kimura
,
T.
, and
Sasaki
,
M.
, 2002, “
Development of Disc Brake Rotors for Trucks With High Thermal Fatigue Strength
,” ’
JSAE Rev.
0389-4304,
23
, pp.
105
112
.
You do not currently have access to this content.