A new model is developed that considers the effect of roughness on the elastic contact of spherical bodies. A general pressure distribution is proposed that encompasses the contact of rough spheres and yields the Hertzian theory for ideally smooth surfaces. A new parameter, nondimensional maximum contact pressure, is introduced and it is shown that this is the key parameter that controls the contact. The results of the present study are presented in the form of compact relationships. These relationships are compared against the experimental data collected by others and good agreement is observed.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
2.
Williamson
,
J. B.
,
Pullen
,
J.
, and
Hunt
,
R. T.
, 1969, “
The Shape of Solid Surfaces
,” Surface Mechanics,
ASME
, New York, 1969, pp.
24
35
.
3.
Whitehouse
,
D. J.
, 1994,
Handbook of Surface Metrology
,
Institute of Physics Pub.
, Bristol.
4.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
, 1969, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
279
300
.
5.
Greenwood
,
J. A.
, and
Williamson
,
B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. Phys. Soc., London, Sect. A
0370-1298,
295
, pp.
300
319
.
6.
Chang
,
W. R.
,
Etison
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
253
.
7.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
8.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University Press
, Amen House, London E.C.4, UK.
9.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surface
,”
J. Appl. Phys.
0021-8979,
24
, pp.
981
988
.
10.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1967, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
0021-8936,
89
, pp.
153
159
.
11.
Persson
,
B. N. J.
, 2000,
Sliding Friction Physical Principles and Applications
,
Springer
, Berlin, Germany.
12.
Greenwood
,
J. A.
, and
Wu
,
J. J.
, 2001, “
Surface Roughness and Contact: An Apology
,”
Meccanica
,
Kluwer Academic Publishers
,
36
, pp.
617
630
.
13.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
14.
Gladwell
,
G. M. L.
, 1980,
Contact Problems in the Classical Theory of Elasticity
,
Alphen aan den Rijn: Sijthoff and Noordhoff
, The Netherlands, Germantown, Maryland, USA.
15.
Mikic
,
B. B.
, and
Roca
,
R. T.
, 1974, “
A Solution to the Contact of Two Rough Spherical Surfaces
,”
ASME J. Appl. Mech.
0021-8936,
96
, pp.
801
803
.
16.
Kagami
,
J.
,
Yamada
,
K.
, and
Hatazawa
,
T.
, 1983, “
Contact Between a Sphere and Rough Plates
,”
Wear
0043-1648,
87
, pp.
93
105
.
17.
Greenwood
,
J. A.
,
Johnson
,
K. L.
, and
Matsubara
,
M.
, 1984, “
A Surface Roughness Parameter in Hertz Contact
,”
Wear
0043-1648,
100
, pp.
47
57
.
18.
Bahrami
,
M.
, 2004, “
Modeling of Thermal Joint Resistance for Rough Sphere-Flat Contact in a Vacuum
,” Ph.D. thesis, University of Waterloo, Dept. of Mech. Eng., Waterloo, Ontario, Canada.
19.
Bahrami
,
M.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
Thermal Contact Resistance: A Scale Analysis Approach
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
896
905
.
20.
Bahrami
,
M.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
Thermal Joint Resistance of Non-Conforming Rough Surfaces with Gas-Filled Gaps
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
326
332
.
21.
Tsukada
,
T.
, and
Anno
,
Y.
, 1979, “
On the Approach Between a Sphere and a Rough Surface (1st. Report-Analysis of Contact Radius and Interface Pressure
,”
J. Jpn. Soc. Precis. Eng.
0374-3543,
45
, pp.
473
479
.
You do not currently have access to this content.