A finite element analysis with the implementation of an advanced cyclic plasticity theory was conducted to study the elastic-plastic deformation under the nonsteady state rolling contact between a wheel and a rail. The consideration of nonsteady state rolling contact was restricted to a harmonic variation of the wheel-rail normal contact force. The normal contact pressure was idealized as the Hertzian distribution, and the tangential force presented by Carter was used. Detailed rolling contact stresses and strains were obtained for repeated rolling contact. The harmonic variation of the normal (vertical) contact force results in a wavy rolling contact surface profile. The results can help understand the influence of plastic deformation on the rail corrugation initiation and growth. The creepage or stick-slip condition greatly influences the residual stresses and strains. While the residual strains and surface displacements increased at a reduced rate with increasing rolling passes, the residual stresses stabilize after a limited number of rolling passes. The residual stresses and strains near the wave trough of the residual wavy deformation are higher than those near the wave crest.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge.
2.
Bower
,
A. F.
, and
Johnson
,
K. L.
, 1991, “
Plastic Flow and Shakedown of the Rail Surface in Repeated Wheel-Rail Contact
,”
Wear
0043-1648,
114
, pp.
1
18
.
3.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Rolling Contact Stress Analysis with the Application of a New Plasticity Model
,”
Wear
0043-1648,
191
, pp.
35
44
.
4.
Merwin
,
J. E.
, and
Johnson
,
K. L.
, 1963, “
An Analysis of Plastic Deformation in Rolling Contact
,”
Proc. Inst. Mech. Eng.
0020-3483,
177
, pp.
676
685
.
5.
McDowell
,
D. L.
, and
Moyar
,
G. J.
, 1987, “
A More Realistic Model of Nonlinear Material Response: Application to Elastic-Plastic Rolling Contact
,”
Proceedings Second International Symposium Contact Mechanics and Wear of Rail∕Wheel Systems
,
University of Waterloo Press
, Waterloo, pp.
100
106
.
6.
McDowell
,
D. L.
, and
Moyar
,
G. J.
, 1991, “
Effects of Non-Linear Kinematic Hardening on Plastic Deformation and Residual Stresses in Rolling Line Contact
,”
Wear
0043-1648,
144
, pp.
19
37
.
7.
Hearle
,
A. D.
, and
Johnson
,
K. L.
, 1987, “
Cumulative Plastic Flow in Rolling and Sliding Line Contact
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
1
7
.
8.
Bower
,
A. F.
, and
Johnson
,
K. L.
, 1989, “
The In?uence of Strain Hardening on Cumulative Plastic Deformation in Rolling and Sliding Line Contact
,”
J. Mech. Phys. Solids
0022-5096,
37
, pp.
471
493
.
9.
Yu
,
C. C.
,
Moran
,
B.
, and
Keer
,
L. M.
, 1993, “
A Direct Analysis of Two-Dimensional Elastic-Plastic Rolling Contact
,”
ASME J. Tribol.
0742-4787,
115
, pp.
227
236
.
10.
Yu
,
C. C.
,
Moran
,
B.
, and
Keer
,
L. M.
, 1995, “
A Direct Analysis of Three-Dimensional Elastic-Plastic Rolling Contact
,”
ASME J. Tribol.
0742-4787,
117
, pp.
234
243
.
11.
Yu
,
C. C.
,
Keer
,
L. M.
, and
Steele
,
R. K.
, 1997, “
Three-Dimensional Residual Stress Effects on the Fatigue Crack Initiation in Rails
,”
ASME J. Tribol.
0742-4787,
119
, pp.
660
666
.
12.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1994, “
An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
0742-4787,
116
, pp.
577
587
.
13.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1999, “
A Model for Rolling Contact Failure
,”
Wear
0043-1648,
224
, pp.
38
49
.
14.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1985, “
An Elastic-Plastic Finite Element Model of Rolling Contact: Part I—Single Contact; Part II—Repeated Contacts
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
66
82
.
15.
Bhargarva
,
V.
,
Hahn
,
G. T.
,
Ham
,
G.
,
Kulkarni
,
S.
, and
Rubin
,
C. A.
, 1986, “
Influence of Kinematic Hardening on Rolling Contact Deformation
,”
Proceedings 3rd International Symposium Contact Mechanics and Wear of Rail∕ Wheel Systems
, Cambridge, pp.
133
146
.
16.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1987, “
Elastic-Plastic Analysis of Hardened Layers in Rims Subjected to Repeated Rolling Contacts
,”
Metall. Trans. A
0360-2133,
18A
, pp.
827
833
.
17.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1988, “
Analysis of Rolling Contact with Kinematic Hardening for Rail Steel Properties
,”
Wear
0043-1648,
122
, pp.
267
283
.
18.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1990, “
Rolling Contact Deformation, Etching Effects and Failure of High Strength Bearing Steels
,”
Metall. Trans. A
0360-2133,
21A
, pp.
1921
1931
.
19.
Hahn
,
G. T.
,
Bhargava
,
V.
,
Rubin
,
C. A.
,
Chen
,
Q.
, and
Kim
,
K.
, 1987, “
Analysis of the Rolling Contact Residual Stresses and Cyclic Plastic Deformation of SAE52100 Steel Ball Bearings
,”
ASME J. Tribol.
0742-4787,
109
, pp.
618
626
.
20.
Ham
,
G. L.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
Bhargava
,
V.
, 1989, “
Finite Element Analysis of the Influence of Kinematic Hardening in Two-Dimensional, Repeated, Rolling-Sliding Contact
,”
Tribol. Trans.
1040-2004,
32
, pp.
311
316
.
21.
Kumar
,
A. M.
,
Hahn
,
G. T.
,
Bhargava
,
V.
, and
Rubin
,
C. A.
, 1989, “
Elasto-Plastic Finite Element Analyses of Two-Dimensional Rolling and Sliding Contact Deformation of Bearing Steel
,”
ASME J. Tribol.
0742-4787,
111
, pp.
309
314
.
22.
Kulkarni
,
S. M.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
, 1991, “
Elasto-Plastic Coupled Temperature-Displacement Finite Element Analysis of Two-Dimensional Rolling-Sliding Contact with a Translating Heat Source
,”
ASME J. Tribol.
0742-4787,
113
, pp.
93
101
.
23.
Howell
,
M.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
McDowell
,
D. L.
, 1995, “
Finite Element Analysis of Rolling Contact for Non-Linear Kinematic Hardening Bearing Steel
,”
ASME J. Tribol.
0742-4787,
117
, pp.
729
736
.
24.
Jiang
,
Y.
,
Chang
,
J.
, and
Xu
,
B.
, 2001, “
Elastic-Plastic Finite Element Stress Analysis of Two-dimensional Rolling Contact
,”
Hydraulic Failure Analysis: Fluids, Components, and System Effects, ASTM STP 1339
,
G. E.
Totten
,
D. K.
Wills
, and
D.
Feldmann
, eds.,
American Society for Testing and Materials
, West Conshohocken, PA, pp.
59
74
.
25.
Jiang
,
Y.
,
Xu
,
B.
, and
Sehitoglu
,
H.
, 2002, “
Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
0742-4787,
124
, pp.
699
708
.
26.
Xu
,
B.
, and
Jiang
,
Y.
, 2002, “
Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact
,”
ASME J. Tribol.
0742-4787,
124
, pp.
20
26
.
27.
Dan Van
,
K.
, and
Maitournam
,
M. H.
, 1993, “
Steady-State Flow in Classical Elastoplasticity: Applications to Repeated Rolling and Sliding Contact
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
1691
1710
.
28.
Hamilton
,
G. M.
, 1963, “
Plastic Flow in Rollers Loaded above the Yield Point
,”
Proc. Inst. Mech. Eng.
0020-3483,
177
, pp.
667
675
.
29.
Shima
,
M.
, and
Okada
,
K.
, 1981, “
Measurements of Subsurface Plastic Flow in Rolling Contact
,”
Journal of Japan Society of Lubrication Engineers, International Edition
,
2
, pp.
75
80
.
30.
Hahn
,
G. T.
, and
Huang
,
Q.
, 1986, “
Rolling Contact Deformation of 1100 Aluminum Disks
,”
Metall. Trans. A
0360-2133,
17A
, pp.
1561
1572
.
31.
Carter
,
F. W.
, 1926, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
1364-5021
112
, pp.
151
157
.
32.
Chen
,
Y. C.
, and
Kuang
,
J. H.
, 2004, “
Partial Slip Rolling Wheel-Rail Contact with a Slant Rail Crack
,”
ASME J. Tribol.
0742-4787,
216
, pp.
450
458
.
33.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modeling of Cyclic Ratchetting Plasticity: Part I—Development of Constitutive Equations
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
720
725
.
34.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modeling of Cyclic Ratchetting Plasticity: Part II—Implement of the New Model and Comparison of Theory with Experiments
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
726
733
.
35.
Ohno
,
N.
, and
Wang
,
J. D.
, 1994, “
Kinematic Hardening Rules for Simulation of Ratchetting Behavior
,”
Eur. J. Mech. A/Solids
0997-7538,
13
, pp.
519
531
.
36.
Hibbitt
,
D.
,
Karlsson
,
B.
, and
Sorensen
,
P.
, 2003, ABAQUS∕Standard User’s Manual, version 6.4, ABAQUS, Inc., Pawtucket, RI.
37.
Jin
,
X.
,
Wen
,
Z.
,
Wang
,
K.
and
Li
,
C.
, 2004, “
Effect of Rail Corrugation Formation on Dynamical Behaviour of Rail Vehicle and Track
,”
Proceedings of the 8th International Workshop on Railway Noise
, University of Southampton, pp.
345
356
.
38.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1994, “
Cyclic Ratchetting of 1070 Steel under Multiaxial Stress State
,”
Int. J. Plast.
0749-6419,
10
, pp.
579
608
.
39.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1994, “
Multiaxial Cyclic Ratchetting under Multiple Step Loading
,”
Int. J. Plast.
0749-6419,
10
, pp.
849
870
.
40.
Grassie
,
S. L.
, and
Kalousek
,
J.
, 1993, “
Rail Corrugation: Characteristics, Causes and Treatments
,”
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
,
207
, pp.
57
68
.
41.
Sato
,
Y.
,
Matsumoto
,
A.
, and
Knothe
,
K.
, 2002, “
Review on Rail Corrugation Studies
,”
Wear
0043-1648,
253
, pp.
130
139
.
42.
Knothe
,
K.
, 2001, “
Non-Steady State Rolling Contact and Corrugation
,”
Rolling Contact Phenomena, Courses and Lectures, Nr. 411
, (2–7, October, 1999,
International Centre for Mechanical Sciences
, Udine, Italy),
Jacobson
,
B.
and
Kalker
,
J. J.
, eds.,
Springer
, Wien, pp.
203
276
.
43.
Frederick
,
C. O.
, “
A Rail Corrugation Theory
,” in
Proceedings of the International Symposium on Contact Mechanics and Wear of Rail-Wheel Systems, II
, University of Kingston, Rhode Island, July 1986,
Gladwell
G. M. L.
,
Ghonem
H.
, and
Kalousek
J.
, eds.,
University of Waterloo Press
, Waterloo, pp.
181
211
.
44.
Hempelmann
,
K.
, 1995, “
Short Pitch Corrugation On Railway Rails—A Linear Model for Prediction
,” Ph.D thesis, Technische Universitat Berlin, Fortschritt-Berichte VDI, Reihe 12, Nr. 231.
45.
Müller
,
S.
, 1998, “
Linearized Wheel-Rail Dynamics—Stability and Corrugation
.” Ph.D dissertation, Technische Universitat Berlin, Fortschritt-Berichte VDI, Reihe 12, Nr. 396.
46.
Igeland
,
A.
, and
Ilias
,
H.
, 1997, “
Rail Head Corrugation Growth Predictions Based on Non-Linear High Frequency Vehicle∕Track Interaction
,”
Wear
0043-1648,
213
, pp.
90
97
.
47.
Nielsen
,
J. B.
, 1999, “
Evolution of Rail Corrugation Predicted with A Non-linear Wear Model
,”
J. Sound Vib.
0022-460X,
227
, pp.
915
933
.
48.
Andersson
,
C.
, and
Johansson
,
A.
, 2004, “
Prediction of Rail Corrugation Generated by Three-Dimensional Wheel-Rail Interaction
,”
Wear
0043-1648,
257
, pp.
423
434
.
49.
Jin
,
X.
,
Wen
,
Z.
,
Wang
,
K.
, and
Zhang
W.
, 2004, “
Effect of a scratch on curved rail on initiation and evolution of rail corrugation
,”
Tribol. Int.
0301-679X,
37
, pp.
385
394
50.
Böhmer
,
A.
, and
Klimpel
,
T.
, 2002, “
Plastic deformation of corrugated rails—A numerical approach using material data of rail steel
,”
Wear
0043-1648,
253
, pp.
150
161
.
51.
Liu
,
Q.
,
Zhang
,
B.
, and
Zhou
,
Z.
, 2003, “
An Experiment Study of Rail Corrugation
,”
Wear
0043-1648,
255
, pp.
1121
1126
.
52.
Liu
,
Q.
,
Jin
X.
,
Wang
,
W.
, and
Zhou
Z.
, 2000, “
An Investigation of Rail Corrugation in China
,”
Proceedings of the 5th International Conference on Contact Mechanics and Wear of Rail∕Wheel Systems
, University of Tokyo, pp.
89
95
.
53.
Jiang
,
Y.
, 2000, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
19
32
.
You do not currently have access to this content.