Molecular dynamics simulations of a rigid diamond tip sliding on a face-centered-cubic copperlike substrate were performed in order to examine the dependence of the friction coefficient on the tip–substrate interference and the shape and size of the tip. For a square-base prismatic tip, the friction force is mainly due to interactions of atoms at the front face of the tip and substrate atoms ahead of the tip, while the normal force is due to interactions of atoms at the tip base and substrate atoms under the tip. However, for a pyramidal tip, both normal and friction forces are mainly due to interactions between atoms at the front face of the tip and substrate atoms in the vicinity of the sliding tip. Consequently, the friction coefficient is either sensitive (square-base prismatic tip) or insensitive (pyramidal tip) to the tip–substrate interference distance. In addition, tip size and orientation effects on the friction coefficient were observed with square- and triangle-base prismatic tips, respectively. Lower friction coefficients were obtained with a larger base area and edge-front sliding with a triangle-base prismatic tip. The results provide insight into atomic-scale friction anisotropies due to the effects of the tip size and shape and the tip–substrate interference.

1.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
2.
Landman
,
U.
,
Luedtke
,
W. D.
,
Burnham
,
N. A.
, and
Colton
,
R. J.
,
1990
, “
Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation and Fracture
,”
Science
,
248
, pp.
454
461
.
3.
Kallman
,
J. S.
,
Hoover
,
W. G.
,
Hoover
,
C. G.
,
De Groot
,
A. J.
,
Lee
,
S. M.
, and
Wooten
,
F.
,
1993
, “
Molecular Dynamics of Silicon Indentation
,”
Phys. Rev. B
,
47
, pp.
7705
7709
.
4.
Leng
,
Y.
,
Yang
,
G.
,
Hu
,
Y.
, and
Zheng
,
L.
,
2000
, “
Computer Experiments on Nano-Indentation: A Molecular Dynamics Approach to the Elasto-Plastic Contact of Metal Copper
,”
J. Mater. Sci.
,
35
, pp.
2061
2067
.
5.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
Molecular Dynamics Simulation of Single and Repeated Indentation
,”
J. Appl. Phys.
,
82
, pp.
4823
4830
.
6.
Belak, J., and Stowers, I. F., 1992, “The Indentation and Scraping of a Metal Surface: A Molecular Dynamics Study,” Fundamentals of Friction: Macroscopic and Microscopic Processes, Singer, I. L., and Pollock, H. M., Eds., Kluwer Academic, The Netherlands, pp. 511–520.
7.
Harrison
,
J. A.
,
White
,
C. T.
,
Colton
,
R. J.
, and
Brenner
,
D. W.
,
1992
, “
Molecular-Dynamics Simulations of Atomic-Scale Friction of Diamond Surfaces
,”
Phys. Rev. B
,
46
, pp.
9700
9708
.
8.
Harrison
,
J. A.
,
Colton
,
R. J.
,
White
,
C. T.
, and
Brenner
,
D. W.
,
1993
, “
Effect of Atomic-Scale Surface Roughness on Friction: A Molecular Dynamics Study of Diamond Surfaces
,”
Wear
,
168
, pp.
127
133
.
9.
Zhang
,
L.
, and
Tanaka
,
H.
,
1997
, “
Towards a Deeper Understanding of Wear and Friction on the Atomic Scale—A Molecular Dynamics Analysis
,”
Wear
,
211
, pp.
44
53
.
10.
Zhang
,
L.
, and
Tanaka
,
H.
,
1999
, “
Atomic Scale Deformation in Silicon Monocrystals Induced by Two-Body and Three-Body Contact Sliding
,”
Tribol. Int.
,
31
, pp.
425
433
.
11.
Shimizu
,
J.
,
Eda
,
H.
,
Yoritsune
,
M.
, and
Ohmura
,
E.
,
1998
, “
Molecular Dynamics Simulation of Friction on the Atomic Scale
,”
Nanotechnology
,
9
, pp.
118
123
.
12.
Matthey
,
T.
, and
Hansen
,
J. P.
,
1998
, “
Molecular Dynamics Simulations of Sliding Friction in a Dense Granular Material
,”
Modell. Simul. Mater. Sci. Eng.
,
6
, pp.
701
707
.
13.
Tamura
,
H.
,
Yoshida
,
M.
,
Kusakabe
,
K.
,
Chung
,
Y.-M.
,
Miura
,
R.
,
Kubo
,
M.
,
Teraishi
,
K.
,
Chatterjee
,
A.
, and
Miyamoto
,
A.
,
1999
, “
Molecular Dynamics Simulation of Friction of Hydrocarbon Thin Films
,”
Langmuir
,
15
, pp.
7816
7821
.
14.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
2000
, “
Molecular Dynamics Simulation of Atomic-Scale Friction
,”
Phys. Rev. B
,
61
, pp.
14007
14019
.
15.
Zhang
,
L. C.
,
Johnson
,
K. L.
, and
Cheong
,
W. C. D.
,
2001
, “
A Molecular Dynamics Study of Scale Effects on the Friction of Single-Asperity Contacts
,”
Tribol. Lett.
,
10
, pp.
23
28
.
16.
Torrens, I. M., 1972, Interatomic Potentials, Academic Press, New York, NY.
17.
Cheng
,
A. L.
, and
Klein
,
M. L.
,
1991
, “
Molecular Dynamics Simulations of Solid Buckminsterfullerenes
,”
J. Phys. Chem.
,
95
, pp.
6750
6751
.
18.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Three-Dimensional Molecular Dynamics Analysis of Atomic-Scale Indentation
,”
ASME J. Tribol.
,
120
, pp.
385
392
.
You do not currently have access to this content.