Contact fatigue of a layered medium consisting of an elastic surface layer and three elastic-plastic underlying layers in sliding contact with a rigid and rough surface was analyzed with the finite element method. To include multiscale roughness effects and self-affine surface features, the topography of the rough surface was characterized by scale-invariant fractal geometry. A contact algorithm was used to identify the critical segment of the rough surface to be used in the contact fatigue simulations. The tensile and shear stress intensity factors and the direction and dominant mode of crack growth were determined from the crack-tip stresses. The effect of surface cracking on the evolution of plasticity in the second layer and the significance of topography (fractal) parameters on crack growth are interpreted in terms of the contact pressure, stress intensity factors, and maximum equivalent plastic strain. It is shown that a transition from tensile to shear dominant mode of fatigue crack growth occurs as the crack tip approaches the interface, resulting in further crack growth almost parallel to the layer interface. The obtained results illustrate the important role of surface roughness in contact fatigue of layered media.

1.
King
,
R. B.
, and
O’Sullivan
,
T. C.
,
1987
, “
Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-Space
,”
Int. J. Solids Struct.
,
23
, pp.
581
597
.
2.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1996
, “
Three-Dimensional Finite Element Analysis of Surface Deformation and Stresses in an Elastic-Plastic Layered Medium Subjected to Indentation and Sliding Contact Loading
,”
ASME J. Appl. Mech.
,
63
, pp.
365
375
.
3.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
,
2003
, “
Effect of Surface Patterning on Contact Deformation of Elastic-Plastic Layered Media
,”
ASME J. Tribol.
,
125
, pp.
16
24
.
4.
Keer
,
L. M.
, and
Worden
,
R. E.
,
1990
, “
A Qualitative Model to Describe the Microchipping Wear Mode in Ceramic Rollers
,”
Tribol. Trans.
,
33
, pp.
411
417
.
5.
Chen
,
S. Y.
,
Farris
,
T. N.
, and
Chandrasekar
,
S.
,
1991
, “
Sliding Microindentation Fracture of Brittle Materials
,”
Tribol. Trans.
,
34
, pp.
161
168
.
6.
Keer
,
L. M.
, and
Kuo
,
C. H.
,
1992
, “
Cracking in a Loaded Brittle Elastic Half-Space
,”
Int. J. Solids Struct.
,
29
, pp.
1819
1826
.
7.
Bower
,
A. F.
, and
Fleck
,
N. A.
,
1994
, “
Brittle Fracture Under a Sliding Line Contact
,”
J. Mech. Phys. Solids
,
42
, pp.
1375
1396
.
8.
Beuth
,
J. L.
, and
Klingbeil
,
N. W.
,
1996
, “
Cracking of Thin Films Bonded to Elastic-Plastic Substrates
,”
J. Mech. Phys. Solids
,
44
, pp.
1411
1428
.
9.
Oliveira
,
S. A. G.
, and
Bower
,
A. F.
,
1996
, “
An Analysis of Fracture and Delamination in Thin Coatings Subjected to Contact Loading
,”
Wear
,
198
, pp.
15
32
.
10.
Lin
,
X. B.
, and
Smith
,
R. A.
,
1999
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates, Part I: The Numerical Technique
,”
Eng. Fract. Mech.
,
63
, pp.
503
522
.
11.
Lin
,
X. B.
, and
Smith
,
R. A.
,
1999
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates, Part III: Stress Intensity Factor and Fatigue Crack Growth Life
,”
Eng. Fract. Mech.
,
63
, pp.
541
556
.
12.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
,
2004
, “
Surface Cracking in Elastic-Plastic Multi-Layered Media Due to Repeated Sliding Contact
,”
ASME J. Tribol.
,
126
, pp.
655
663
.
13.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York.
14.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
15.
Borodich
,
F. M.
, and
Onishchenko
,
D. A.
,
1999
, “
Similarity and Fractality in the Modeling of Roughness by a Multilevel Profile with Hierarchical Structure
,”
Int. J. Solids Struct.
,
36
, pp.
2585
2612
.
16.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
17.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.
18.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
, pp.
824
832
.
19.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
, pp.
3617
3624
.
20.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
,
2000
, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
,
456
, pp.
387
405
.
21.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2001
, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
,
123
, pp.
632
640
.
22.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurements of the Statistical Microgeometry of Engineering Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
409
418
.
23.
Greenwood, J. A., 1992, “Problems with Surface Roughness,” in Fundamentals of Friction: Macroscopic and Microscopic Processes, edited by I. L., Singer, and H. M., Pollock, Kluwer Academic, Boston, MA, NATO ASI Series E: Applied Sciences, 220, pp. 57–76.
24.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
25.
Russ, J. C., 1994, Fractal Surfaces, Plenum, New York.
26.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
ASME J. Tribol.
,
119
, pp.
391
400
.
27.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass–Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
,
370
, pp.
459
484
.
28.
Komvopoulos
,
K.
,
2000
, “
Head–Disk Interface Contact Mechanics for Ultrahigh Density Magnetic Recording
,”
Wear
,
238
, pp.
1
11
.
29.
Komvopoulos
,
K.
, and
Choi
,
D.-H.
,
1992
, “
Elastic Finite Element Analysis of Multi-Asperity Contacts
,”
ASME J. Tribol.
,
114
, pp.
823
831
.
30.
Komvopoulos
,
K.
, and
Cho
,
S.-S.
,
1997
, “
Finite Element Analysis of Subsurface Crack Propagation in a Half-Space Due to a Moving Asperity Contact
,”
Wear
,
209
, pp.
57
68
.
You do not currently have access to this content.