The aim of this study is to evaluate the temperature and the heat distribution into the two components of a disc brake system by combining macroscopic and microscopic effects. The major difficulty of the thermal problem is to determine how the heat is generated and how it is distributed in the two components in contact during transient state. Contrary to classical approaches assuming equal temperature at the contact surfaces, a contact interface is introduced in the model as a thin layer of third body with uniform volumic heat generation. This micro-macro model gives original indications on the temperatures near the contact surfaces, on the thermal gradients between the two components and on the heat partition between the two bodies during the braking time. Comparison with classical thermal models is discussed.

1.
Kennedy
,
F. E.
,
1984
, “
Thermal and Thermomechanical Effects in Dry Sliding
,”
Wear
,
100
, pp.
453
476
.
2.
Dufre´noy
,
P.
, and
Weichert
,
D.
,
1995
, “
Prediction of Railway Disc Brake Temperatures Taking the Bearing Surface Variations Into Account
,”
IMechE, Part F: Journal of Rail and Rapid Transit
,
209
, pp.
67
76
.
3.
Berthier, Y., 2001, Background on Friction and Wear, Lemaitre Handbook of Materials Behavior Models, Lemaitre Academic Press, pp. 676–699, Chpt. 8.
4.
Descartes, S., and Berthier, Y., 2001, “Frottement et usure e´tudie´s a` partir de la rhe´ologie et des de´bits de 3em`e corps solide,” Mate´riaux & Techniques, SIRPE ed., Paris, 1-2, pp. 3–14.
5.
Archard
,
J. F.
,
1958
, “
The Temperatures of Rubbing Surfaces
,”
Wear
,
2
, pp.
438
455
.
6.
Vernotte, P., 1956, Calcul nume´rique, calcul physique: Application a` la thermocine´tique, Publications scientiques et techniques du ministe`re de l’air.
7.
Bardon
,
J. P.
,
1994
, “
Bases physiques des conditions de contact thermique imparfait entre milieux en glissement relatif
,”
Rev. Ge´n. Therm. Fr.
,
386
, pp.
85
91
.
8.
Laraqi
,
N.
,
1996
, “
Phe´nome`ne de constriction thermique dans les contacts glissants
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3717
3724
.
9.
Cames-Pintaux
,
A. M.
, and
Padet
,
J. P.
,
1980
, “
Etude des contacts thermiques en re´gime transitoire. Proposition d’un mode`le thermiquement e´quivalent
,”
Int. J. Heat Mass Transfer
,
23
, pp.
981
990
.
10.
Newcomb
,
T. P.
,
1959
, “
Transient Temperatures Attained in Disk Brakes
,”
Br. J. Appl. Phys.
,
10
, pp.
339
340
.
11.
Limpert, R., 1992, Brake Design and Safety, Elsevier Editions, New York.
12.
Tirovic, M., and Day, A. J., 1990, “The Calculation of Temperatures in Brakes,” Second One-Day Workshop on Disc and Drum Brake Performance, University of Bradford, UK.
13.
Berthier, Y., 1988, “Me´canismes et tribologie,” Ph.D. thesis, N° 88ISAL0050, INSA de Lyon France.
14.
Ryhming
,
I. L.
,
1979
, “
On Temperature and Heat Source Distributions in Sliding Contact Problems
,”
Acta Mech.
,
32
, pp.
261
274
.
15.
Day, A. J., 1983, “Energy Transformation at the Friction Interface of a Brake,” Ph.D. thesis, The Loughborough University of Technology.
16.
Majcherczak, D., Dufre´noy, P., and Nai¨t-Abdelaziz, M., “Thermal Simulation of a Dry Sliding Contact Using a Multiscale Model—Application to the Braking Problem,” Thermal Stresses 2001, Osaka Prefecture University, Japan pp. 437–440.
17.
Noll, N., 1997, “Conception et naissance d’un contact tribologique—Ro^le des e´crans de surface,” Ph.D. thesis, INSA de LYON, France.
18.
Holman, J. P., Heat Transfer, 8th ed., MacGraw-Hill.
You do not currently have access to this content.