This paper describes a measurement system designed to determine the hysteresis that develops between two surfaces as a result of small-amplitude tangential relative motion. Hysteresis is determined by measuring the tangential force and relative displacement of the contacting surfaces as they oscillate. These measurements also produce values of contact parameters such as friction coefficient and tangential contact stiffness. Although these parameters depend on the tribological properties, most of them also exhibit strong sensitivity to measurement errors. The measurement system described here avoids or at least reduces many of the measurement artifacts. This paper validates the measurement system by analyzing and estimating potential errors and describes corrections to systematic errors where possible.

1.
Griffin
,
J. H.
,
1980
, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
ASME J. Eng. Power
,
102
, pp.
329
333
.
2.
Feeny
,
B. F.
,
Guran
,
A.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review of Dry Friction and Stick-Slip Phenomena
,”
Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
.
3.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
.
4.
Cattaneo, C., 1938, “Sul Contatto di due Corpi Elastici,” Accademia dei Lincei, Serie 6, fol. 27, part I: pp. 342–348, part II: pp. 434–436, part III: pp. 474–478.
5.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, p.
259
259
.
6.
Mindlin, R. D., Mason, W. P., Osmer, I. F., and Deresiewicz, H., 1951, “Effects of an Oscillatin Tangential Force on the Contact Surfaces of Elastic Spheres,” Proceedings of the First U.S. National Congress of Applied Mechanics, pp. 203–208.
7.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,” J. Appl. Phys., pp. 327–343.
8.
Yanq
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
.
9.
Petrov, E. P., and Ewins, D. J., 2002, “Analytical Formulation of Friction Interface Elements for Analysis on Nonlinear Multi-Harmonic Vibrations of Bladed Discs,” Proceedings ASME Turbo Expo 2002, Amsterdam, Paper No. GT-2002-30325.
10.
Menq
,
C. H.
,
Griffin
,
J. H.
, and
Bielak
,
J.
,
1986
, “
The Influence of Microslip on Vibratory Response, Part I: A New Microslip Model, Part II: A Comparison with Experimental Results
,”
J. Sound Vib.
,
107
, pp.
279
293
, pp. 295–307.
11.
Csaba, G., 1999, “Modelling of a Microslip Friction Damper Subjected to Translation and Rotation,” ASME Gas Turbine & Aeroengine Congress and Exhibition Indinapolis, Paper No. 99-GT-149.
12.
Sanliturk, K. Y., Ewins, D. J., and Stanbridge, A. B., 1999, “Under-Platform Dampers for Turbine Blades: Theoretical Modelling, Analysis and Comparison with Experimental Data,” ASME Gas Turbine & Aeroengine Congress and Exhibition Indianapolis, Paper No. 99-GT-335.
13.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. London, Ser. A
,
A230
, pp.
531
549
.
14.
Goodman
,
L. E.
, and
Klumpp
,
J. H.
,
1956
, “
Analysis of Slip Damping With Reference to Turbine—Blade Vibration
,”
ASME J. Appl. Mech.
,
23
, pp.
421
429
.
15.
Goodman
,
L. E.
, and
Brown
,
C. B.
,
1962
, “
Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading
,”
ASME J. Appl. Mech.
,
29
, pp.
17
22
.
16.
Burdekin
,
M.
,
Back
,
N.
, and
Cawley
,
A.
,
1978
, “
Experimental Study of Normal and Shear Characteristics of Machined Surfaces in Contact
,”
J. Mech. Eng. Sci.
,
20
(
3
), pp.
121
127
.
17.
Liang, J. W., and Feeny, B. F., 1996, “The Effects of Tangential Contact Stiffness on a Harmonically Forced Friction Oscillator,” Proceedings of ASME Elasto-Impact and Friction in Dynamic Systems, DE-90, ASME, New York, pp. 85–96.
18.
Liang
,
J. W.
, and
Feeny
,
B. F.
,
1998
, “
Dynamical Friction Behavior in a Forced Oscillator With a Compliant Contact
,”
ASME J. Appl. Mech.
,
65
, pp.
250
257
.
19.
Liang
,
J. W.
, and
Feeny
,
B. F.
,
1998
, “
A Comparison Between Direct and Indirect Friction Measurements in a Forced Oscillator
,”
ASME J. Appl. Mech.
,
65
, pp.
783
787
.
20.
Liang
,
J. W.
, and
Feeny
,
B. F.
,
1998
, “
Identification of Coulomb and Viscous Friction From Free-Vibration Decrements
,”
Nonlinear Dynamics
,
16
, pp.
337
347
.
21.
Liang
,
J. W.
, and
Feeny
,
B. F.
,
2004
, “
Identifying Coulomb and Viscous Friction in Forced Dual-Damped Oscillators
,”
ASME J. Vib. Acoust.
,
126
, pp.
118
125
.
22.
Berruti, T., Filippi, S., Goglio, L., and Gola, M. M., 2000, “A Test Rig for Frictionally Damped Bladed Segments,” ASME Gas Turbine and Aeroengine Congress and Exhibition Munich, Paper No. 2000-GT-538.
23.
Berruti, T., Filippi, S., Gola, M. M., and Salvano, S., 2001, “Friction Damping of Interlocked Vane Segments: Experimental Results,” ASME Gas Turbine and Aeroengine Congress and Exhibition, Paper No. 2001-GT-432.
24.
Celik, C. E., 2000, “Modeling and Identification of Friction in Dynamic Systems” Doctor of Philosophy Thesis, Carnegie Mellon University, Pittsburgh, PA.
25.
Filippi, S., 2002, “Isteresi di Contatto e Smorzamento delle Vibrazioni nelle Palettature di Turbina,” Doctor of Philosophy Thesis, Politecnico di Torino, Turin.
26.
Johnson, K. L., 1985, Contact Mechanics, Cambridge Univ. Press, Cambridge, pp. 216–220.
You do not currently have access to this content.