In this study, a segregated Finite Element Method (FEM) in the Petrov Galerkin framework with suitably defined Streamline Upwind Petrov Galerkin (SUPG) weight functions for a non-isothermal flow with temperature dependent density and viscosity in a high speed slider bearing has been proposed. The nonlinear partial differential equations (PDEs) governing the mass, momentum and energy conservations in thermohydrodynamic lubrication (THDL) of a high speed slider bearing with injection effects has been numerically analyzed for temperature, velocity and pressure fields. To assess the influence of the injection boundary condition on load generation and frictional drag in a slider bearing results have been compared with those from a study devoid of injection effects. Further the influence of consideration of fore-region pressure, geometrical configuration of a slider bearing, Peclet Number and thermoviscosity co-efficient in conjunction with oil injection effect on the load carrying capacity has been investigated. Oil injection is observed to bring in not only a gain in load carrying capacity but also a reduction in frictional drag and a reduction in the temperature specially in the vicinity of pad.

1.
Leopard, A. J., 1970, “Directed Lubrication for Tilting Pad Thrust Bearings,” Tribology, pp. 206–210.
2.
Tanaka, M., and Mishima, N., 1989, “Thermohydrodynamic Performance of a Spot-Fed Tilting Pad Journal Bearing,” Proceedings of Eurotrib89, 3, pp. 198–203.
3.
Tanaka
,
M.
,
1991
, “
Thermohydrodynamic Performance of a Tilting Pad Journal Bearing With Spot Lubrication
,”
ASME J. Tribol.
,
113
, pp.
615
619
.
4.
Santos
,
I. F.
, and
Russo
,
F. H.
,
1998
, “
Tilting Pad Journal Bearings With Electronic Radial Oil Injection
,”
ASME J. Tribol.
,
120
, pp.
583
594
.
5.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
1999
, “
THD Analysis in Tilting Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication
,”
ASME J. Tribol.
,
121
, pp.
892
900
.
6.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid Film Lubrication
,”
Int. J. Mech. Sci.
,
4
, pp.
159
170
.
7.
Dowson, D., and March, C., 1996, “A Thermohydrodynamic Analysis of Journal Bearings,” Proc. of IME, 181, Part 30, pp. 117–126.
8.
Reddi
,
M. M.
,
1969
, “
Finite Element Solution of the Incompressible Lubrication Problem
,”
J. Lubr. Technol.
69
, pp.
524
531
.
9.
Huebner
,
K. H.
,
1974
, “
Application of Finite Element Method to Thermohydrodynamic Lubrication
,”
Int. J. Numer. Methods Eng.
,
8
, pp.
139
165
.
10.
Jones
,
G. J.
, and
Martin
,
F.
,
1979
, “
Geometry Effects in Tilting Pad Journal Bearings
,”
ASLE Trans.
,
22
, No.
3
, pp.
227
244
.
11.
Pinkus
,
O.
,
1984
, “
Optimization of Tilting Pad Journal Bearings Including Turbulence and Thermal Effects
,”
Isr. J. Technol.
,
22
, pp.
142
154
.
12.
Gero
,
L. R.
, and
Ettles
,
C. M. M.
,
1987
, “
A Three Dimensional Thermohydrodynamic Finite Element Scheme for Fluid Film Bearings
,”
STLE Tribol. Trans.
,
31
, No.
2
, pp.
182
191
.
13.
Elrod, H. G., 1991, “Efficient Numerical Method for Computation of Thermohydrodynamics of Laminar Lubricating Films,” J. Lubr. Technol., pp. 506–511.
14.
Brockwell
,
K.
, and
Dmochowski
,
W.
,
1992
, “
Thermal Effects in the Tilting Pad Journal Bearing
,”
J. Phys. D: Appl. Phys.
25
, pp.
384
392
.
15.
Ha
,
H. C.
,
Kim
,
K. W.
, and
Kim
,
H. J.
,
1995
, “
Inlet Pressure Effects on the Thermodydrodynamic Performance of Large Tilting Pad Journal Bearing
,”
ASME J. Tribol.
,
117
, pp.
160
165
.
16.
Schumark
,
M. R.
,
1996
, “
Application of the Pseudo Spectral Method to Thermohydrodynamic Lubrication
,”
Int. J. Numer. Methods Fluids
,
23
, pp.
1145
1161
.
17.
Rathish Kumar
,
B. V.
,
Rao
,
P. S.
, and
Sinha
,
P.
,
2000
, “
SUPG/FEM Analysis of Thermal Effects on Load Carrying Capacity in Slider Bearings
,”
Int. J. Numerical Heat Transfer
,
38
, No.
3
, pp.
305
328
.
18.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubrication Films
,”
ASME J. Lubr. Technol.
,
95
, pp.
137
146
.
19.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seal Flow and Hirs Lubrcation Equation
,”
ASME J. Lubr. Technol.
,
105
pp.
19
31
.
20.
Yang
,
Z.
,
Sanders
,
I.
, and
Childs
,
D. W.
,
1993
, “
Thermal Effects in Liquid Annular Seals Part 1: Theory and Approximate Solution
,”
ASME J. Tribol.
,
115
, pp.
267
276
.
21.
Gethin Childs
,
D. W.
,
1987
, “
An Application of the Finite Element Method to the Thermohydrodynamic Analysis of a Thin Film Cylindrical Bore Bearing Running at High Sliding Speed
,”
ASME J. Tribol.
,
109
, pp.
283
289
.
22.
Rodkiewicz
,
C. M.
, and
Sinha
,
P.
,
1993
, “
On the Lubrication Theory: A Mechanism Responsible for Generation of the Parallel Bearing Load Capacity
,”
Trans. ASME J. Tribology
,
105
, pp.
584
590
.
23.
Talmage
,
G.
, and
Caprino
,
M.
,
1997
, “
A Pseudospectral Finite Difference Analysis of an Infinitely Wide Slider Bearing With Thermal and Inertial Effects
,”
STLE Tribol. Trans.
,
40
, No.
2
, pp.
251
258
.
24.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Strokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
25.
Grygiel
,
Jean-Michel
et al.
,
1991
, “
Finite Element Solution for Advection-Dominated Thermal Flows
,”
Comput. Methods Appl. Mech. Eng.
,
93
, pp.
277
289
.
26.
Ezzat, H. A., and Rhode, S. M., 1973, “A Study of the Thermohydrodynamic Performance of Finite Slider Bearings,” ASME J. Lubr. Technol., pp. 298–307.
27.
Rathish Kumar, B. V., Rao, P. S., and Sinha, P., 2000, “A Numerical Study of Performance of a Slider Bearing With Heat Conduction to the Pad,” to appear in Int. J. Finite Elements in Analysis and Design.
28.
Lebeck
,
A. O.
,
1987
, “
Parallel Sliding Load Support in the Mixed Friction Regime, Part 1: The Experimental Data
,”
ASME J. Tribol.
,
109
, pp.
189
195
.
29.
Hamrock, B. J., 1993, Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York.
30.
Pinkus, O., 1990, Thermal Aspects of Fluid Film Tribology, ASME, New York.
You do not currently have access to this content.