A numerical formulation is presented for the dynamic analysis of spiral-grooved gas lubricated mechanical face seals with a flexibly mounted stator. Axial and angular modes of motion are considered. Both finite volume and finite element methods are employed for the spatial discretization of the unsteady, compressible form of the Reynolds equation. Self-adapting unwinding schemes are employed in both methods, making them suitable for situations when the compressibility number is high. Both the lubrication analysis and the kinetic analysis are arranged into a single state space form, which makes coupling the two analyses straightforward. The resulting set of equations is solved using a linear multistep ordinary differential equation solver. Examples of the transient response to static stator misalignment and rotor runout are given. Although a properly designed spiral grooved face seal provides good dynamic performance, it is shown that unacceptably large face separation can occur when large angle spiral grooves are employed together with a sealing dam.

1.
Etsion
,
I.
,
1982
, “
A Review of Mechanical Face Seal Dynamic
,”
Shock Vibr. Dig.
,
14
, No.
3
, pp.
9
14
.
2.
Etsion
,
I.
,
1985
, “
Mechanical Face Seal Dynamics Update
,”
Shock Vibr. Dig.
,
17
, No.
4
, pp.
11
16
.
3.
Etsion
,
I.
,
1991
, “
Mechanical Face Seal Dynamics 1985–1989
,”
Shock Vibr. Dig.
,
23
, No.
4
, pp.
3
7
.
4.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
,
87
, pp.
547
558
.
5.
Zirkelback, N., and San Andre´s, L., 1998, “Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals,” ASME Paper No. 98-TRIB-12.
6.
Miller
,
B.
, and
Green
,
I.
,
1997
, “
On the Stability of Gas Lubricated Triboelements Using the Step Jump Method
,”
ASME J. Tribol.
,
119
, No.
1
, pp.
193
199
.
7.
James
,
D. D.
, and
Potter
,
A. F.
,
1967
, “
Numerical Analysis of the Gas Lubricated Spiral Groove Thrust Bearing Compressor
,”
ASME J. Lubr. Technol.
,
89
, pp.
439
444
.
8.
Leefe, S., 1994, “Modeling of Plain Face Gas Seal Dynamics,” 14th International Conference on Fluid Sealing, BHR Group Conference Series, No. 9, pp. 397–424.
9.
Castelli
,
V.
, and
Pirvics
,
J.
,
1968
, “
Review of Numerical Methods in Gas Bearing Film Analysis
,”
ASME J. Lubr. Technol.
,
90
, pp.
777
792
.
10.
Shapiro
,
W.
, and
Colsher
,
R.
,
1974
, “
Steady State and Dynamic Analysis of a Jet-Engine, Gas Lubricated Shaft Seal
,”
ASLE Trans.
,
17
, No.
3
, pp.
190
200
.
11.
Basu
,
P.
,
1992
, “
Analysis of a Radial Groove Gas Face Seal
,”
Tribol. Trans.
,
35
, No.
1
, pp.
11
20
.
12.
Reddi
,
M. M.
, and
Chu
,
T. Y.
,
1970
, “
Finite Element Solution of the Steady-state Compressible Lubrication Problem
,”
ASME J. Lubr. Technol.
,
92
, July, pp.
495
503
.
13.
Garcia-Suarez
,
C.
,
Bogy
,
D. B.
, and
Talke
,
F. E.
,
1984
, “
Use of an Upwind Finite Element Scheme for Air-Bearing Calculations
,” Tribology and Mechanics of Magnetic Storage Systems,
ASLE Spec. Publ.
,
SP-16
, B. Bhushan, D. Bogy, N. S. Eiss, and F. E. Talke, eds., 1, pp.
90
96
.
14.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
, pp.
348
354
.
15.
Tournerie, B., Huitric, J., Bonneau, D., and Frene, J., 1994, “Optimization and Performance Prediction of Grooved Face Seals for Gases and Liquids,” Proceedings of the 14th International Conference on Fluid Sealing, BHR Group Limited, Cranfield, UK.
16.
Cha
,
E.
, and
Bogy
,
D. B.
,
1995
, “
A Numerical Scheme for Static and Dynamic Simulation of Subambient Pressure Shaped Rail Sliders
,”
ASME J. Tribol.
,
117
, pp.
36
46
.
17.
Green
,
I.
, and
Etsion
,
I.
,
1985
, “
Stability Threshold and Steady-State Response of Noncontacing Coned-Face Seals
,”
ASLE Trans.
,
28
, No.
4
, pp.
449
460
.
18.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report-Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
, pp.
253
262
.
19.
Fukui
,
S.
, and
Kaneko
,
R.
,
1990
, “
A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems
,”
ASME J. Tribol.
,
112
, pp.
78
83
.
20.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, John Wiley and Sons, New York.
21.
Grandin, H., Jr., 1991, Fundamentals of the Finite Element Method, Waveland Press, Inc., Prospect Heights, Illinois.
22.
Heinrich
,
J. C.
, and
Zienkiewicz
,
O. C.
,
1977
, “
Quadratic Finite Element Schemes for Two-Dimensional Convective-Transport Problems
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
1831
1844
.
23.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY.
24.
Kogure
,
K.
,
Fukui
,
S.
,
Mitsuya
,
Y.
, and
Kaneko
,
R.
,
1983
, “
Design of Negative Pressure Slider for Magnetic Recording Disks
,”
ASME J. Lubr. Technol.
,
105
, July, pp.
496
502
.
25.
Shampine, L. F., 1994, Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New York, NY.
You do not currently have access to this content.