Using dislocation pileup theory, a model is given for the prediction of crack initiation life under contact fatigue. Near surface crack initiation is investigated by introducing the sliding contact boundary condition. Crack initiation originated at the surface and substrate are treated as extreme cases. The new model physically explains how a surface crack can be initiated and shows that the surface crack initiation life should be shorter than the subsurface crack initiation life under the same stress amplitude conditions. A discussion is given about the influence of residual stress, hardness, temperature, irreversibility of the plastic deformation, as well as other parameters that affect the crack initiation life. Preliminary comparisons show that the new model agrees well with the experimental observations of surface and near surface crack initiation.

This content is only available via PDF.
You do not currently have access to this content.