Dynamic simulations of the performance of a ball bearing are presented in terms of the general motion as obtained by integrating the differential equations of motion of the various bearing elements. It is shown that bearing misalignment significantly influences the ball/cage and race/cage interaction and, hence, the stability of cage motion. The increased radial to axial load ratios promote skidding which couples with the lubricant behavior to impose accelerations on the ball which ultimately influence the ball/cage interactions. Hence, the lubricant behavior and the large load variation on the balls play dominant roles not only in determining the extent of skidding but also in establishing the overall stability of the cage motion.

This content is only available via PDF.
You do not currently have access to this content.