Graphical Abstract Figure

Pressure wave refrigerator

Graphical Abstract Figure

Pressure wave refrigerator

Close modal

Abstract

Thermal separation in a pressure wave refrigerator (PWR) occurs primarily through the propagation of shock waves and reverse-moving rarefied waves produced by injecting a high-pressure gas into a low-pressure residual gas in a receiving tube or channel. The major advantages of PWRs are simple design, low cost, high reliability, low rotational speed, and efficiency comparable to the conventional turbo-expanders. The objectives of this work are to understand the thermal separation in PWRs and to study the effects of various geometrical and operating parameters on the performance of PWRs. Two-dimensional computational fluid dynamics (CFD) simulation using a finite volume method is adopted for this study. The results indicate that the temperature and pressure profiles of the fluid inside the receiving tube just before the discharge, in the region about half the tube length from the inlet nozzle, strongly govern the performance of a PWR. The operating frequency at which the isentropic efficiency attains the first peak value is determined in a generalized way. Within the chosen geometrical and operating parameters, the optimized tube length, operating frequency, and pressure ratio are 2 m, 50 Hz, and 2.5, respectively. The findings in this article will be useful in designing and operating PWRs optimally.

References

1.
Akbari
,
P.
,
Kharazi
,
A. A.
, and
Müller
,
N.
,
2003
, “
Utilizing Wave Rotor Technology to Enhance the Turbo Compression in Power and Refrigeration Cycles
,”
Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition, Process Industries
,
Washington, DC
,
Nov. 15–21
, pp.
75
83
.
2.
Akbari
,
P.
, and
Muller
,
N.
,
2005
, “
Wave Rotor Research Program at Michigan State University
,”
41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Tucson, AZ
,
July 10–13
, AIAA Paper 2005-3844.
3.
Lei
,
Y.
,
Zhou
,
D. S.
, and
Zhang
,
H. G.
,
2010
, “
Investigation on Performance of a Compression-Ignition Engine With Pressure-Wave Supercharger
,”
Energy
,
35
(
1
), pp.
85
93
.
4.
Akbari
,
P.
,
Nalim
,
M. R.
, and
Müller
,
N.
,
2006
, “
Performance Enhancement of Microturbine Engines Topped With Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
190
202
.
5.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
J. Propul. Power
,
25
(
4
), pp.
833
844
.
6.
Saito
,
T.
,
Voinovich
,
P.
,
Zhao
,
W.
,
Shibasaki
,
K.
,
Shibasaki
,
S.
, and
Takayama
,
K.
,
2003
, “
Experimental and Numerical Study of Pressure Wave Refrigerator Performance
,”
Shock Waves
,
13
(
4
), pp.
253
259
.
7.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
,
2004
, “
An Application of Wave Rotor Technology for Performance Enhancement of R718 Refrigeration Cycles
,”
Second International Energy Conversion Engineering Conference
,
Providence, RI
,
Aug. 16–19
, AIAA Paper 2004-5636.
8.
Galyukov
,
A.
,
Timofeev
,
E.
, and
Voinovich
,
P.
,
1996
, “
Numerical Study of Wave Processes in a Pressure-Wave Refrigerator
,”
Shock Waves
,
6
(
5
), pp.
301
308
.
9.
Zhao
,
W.
,
Jiang
,
Z. L.
,
Yu
,
H. R.
,
Saito
,
T.
, and
Takayama
,
K.
,
2005
, “
Wave Propagation Analysis in a Pressure-Wave-Refrigerator
,”
Mod. Phys. Lett. B
,
19
(
28 and 29
), pp.
1747
1750
.
10.
Thiel
,
M.
,
2001
, “
Application of Shock Waves in Medicine
,”
Clin. Orthop. Relat. Res.
,
387
, pp.
18
21
.
11.
Holfeld
,
J.
,
Tepeköylü
,
C.
,
Kozaryn
,
R.
,
Mathes
,
W.
, and
Grimm
,
M.
,
2014
, “
Shock Wave Application to Cell Cultures
,”
J. Visualized Exp.
,
86
, p.
51076
.
12.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.
13.
Yuqiang
,
D.
,
Jiupeng
,
Z.
,
Che
,
Z.
,
Peiqi
,
L.
,
Jiaquan
,
Z.
,
Liming
,
Z.
, and
Dapeng
,
H.
,
2010
, “
Thermodynamic Analysis of Wave Rotor Refrigerators
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
2
), p.
021011
.
14.
Hu
,
D.
,
Li
,
R.
,
Liu
,
P.
, and
Zhao
,
J.
,
2016
, “
The Design and Influence of Port Arrangement on an Improved Wave Rotor Refrigerator Performance
,”
Appl. Therm. Eng.
,
107
, pp.
207
217
.
15.
Zhao
,
Y.
,
Li
,
H.
, and
Hu
,
D.
,
2023
, “
Experimental and Numerical Research on Strengthening the Performance of Wave Rotor Equipment With Curved Passages
,”
J. Therm. Sci.
,
32
(
1
), pp.
59
80
.
16.
Zhao
,
Y.
,
Ji
,
Y.
,
Hu
,
D.
, and
Wang
,
J.
,
2023
, “
Experimental Research of the Entire Wave System Inside a Wave Rotor Refrigerator and the Impact of Pressure Ratios on the Equipment Performance
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062101
.
17.
Zhou
,
Z.Q.
,
Ma
,
J.W.
,
Wang
,
Y.Q.
,
Hu
,
G.Q.
,
Sun
,
Y.W.
, and
Jia
,
Z.Y.
,
2024
, “
A Method to Reduce the Fluid Mass Transfer Loss of Rotating Jet: A Kind of Microstructure Design and Research for Wave Rotor Refrigerator
,”
Int. J. Heat Mass Transfer
,
219
, p.
124832
.
18.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
,
2005
, “
Preliminary Study of a Novel R718 Compression Refrigeration Cycle Using a Three-Port Condensing Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
539
544
.
19.
Semenov
,
V. Y.
,
Laukhin
,
Y. A.
,
Kozlov
,
A. V.
,
Malakhov
,
S. B.
,
Levdik
,
G. N.
, and
Prokshin
,
M. Y.
,
2009
, “
Experimental Investigations of Cryogenic Wave Expander-Compressor
,”
Chem. Petrol. Eng.
,
45
(
3–4
), pp.
216
220
.
20.
Shao
,
J.
,
Bao
,
Y.
,
Shen
,
Y.
,
Feng
,
Y.
,
Zhang
,
C.
, and
Gao
,
J.
,
1986
, “Experimental Investigation of a New Type Expander,”
Advances in Cryogenic Engineering
, Vol.
31
,
R.W.
Fast
, ed.,
Springer U.S.
,
Boston, MA
, pp.
685
692
.
21.
Jian
,
S.
,
Jingling
,
G.
,
Yangpu
,
F.
,
Yongnian
,
S.
, and
Chaohan
,
Z.
,
1986
, “
Experimental Study of the Influence of Transient Performance in Pressure Pulse Tubes on Isentropic Efficiency of Rotary Jet Expanders
,”
Cryogenics
,
26
(
11
), pp.
634
636
.
22.
Liang
,
S. B.
, and
Hao
,
Y. C.
,
2000
, “
A Novel Cryogenic Grinding System for Recycling Scrap Tire Peels
,”
Adv. Powder Technol.
,
11
(
2
), pp.
187
197
.
23.
Liang
,
S. B.
,
Li
,
X. L.
, and
Ma
,
H. B.
,
2003
, “
Thermoacoustic Power Effect on the Refrigeration Performance of Thermal Separators
,”
Cryogenics
,
43
(
9
), pp.
493
500
.
24.
Kukharenko
,
V. N.
,
2002
, “Mathematical Model of a Wave Cooler,”
Cryocoolers, 10
,
R. G.
Ross
, ed.,
Springer U.S.
,
Boston, MA
, pp.
405
411
.
25.
Hu
,
D.
,
Chen
,
S.
,
Liu
,
H.
,
Chen
,
Z.
, and
Zhu
,
C.
,
2006
, “
Numerical and Experimental Study on Contact Face and Shock Wave Motion in the Receiving Tube of Gas Wave Refrigerator
,”
J. Therm. Sci.
,
15
(
4
), pp.
337
341
.
26.
Hu
,
D.
,
Chen
,
S.
,
Yang
,
J.
,
Chen
,
Z.
,
Dai
,
Y.
,
Zhu
,
C.
, and
Liu
,
R.
,
2008
, “
Study on Gas and Wave in a Receiving Tube
,”
J. Therm. Sci.
,
17
(
2
), pp.
170
174
.
27.
Hu
,
D.
,
Liu
,
P.
,
Zhao
,
W.
,
Zhu
,
C.
,
Wang
,
Y.
,
Dai
,
Y.
, and
Zou
,
J.
,
2009
, “
Study on Wall Temperature Distribution of Oscillating Tube
,”
J. Therm. Sci.
,
18
(
3
), pp.
246
252
.
28.
Liu
,
P. Q.
,
Zhu
,
Y. Q.
,
Zhao
,
J. Q.
,
Hu
,
D. P.
, and
Zou
,
J. P.
,
2013
, “
Investigation and Optimization of Waves Motion Behavior in Pressure Oscillating Tube
,”
Exp. Therm. Fluid. Sci.
,
50
, pp.
193
200
.
29.
Zheng
,
M.
,
Liu
,
X.
,
Huang
,
C.
,
Lin
,
Y.
,
Lei
,
X.
, and
Li
,
X.
,
2014
, “
Incident Shock Wave Attenuation in Oscillatory Tube and Influence on Performance of Pressure Wave Refrigerator
,”
J. Chem. Ind. Eng.
,
65
(
9
), pp.
3410
3417
.
30.
Liu
,
P.
,
Zhu
,
Y.
,
Wang
,
H.
,
Zhu
,
C.
,
Zou
,
J.
,
Wu
,
J.
, and
Hu
,
D.
,
2017
, “
Influence of the Nozzle Angle on Refrigeration Performance of a Gas Wave Refrigerator
,”
Shock Waves
,
27
(
3
), pp.
507
516
.
31.
Zheng
,
M.
,
Liu
,
X.
,
Li
,
X.
,
Fan
,
Y. X.
,
Jiang
,
X.
,
Li
,
X.
, and
Tu
,
J.
,
2018
, “
Experimental Study of the Influence of Some Factors on the Refrigeration Efficiency of Pressure Wave Refrigerator
,”
4th International Conference On Building Energy, Environment
,
Melbourne, Australia
,
Feb. 5–9
, pp.
192
197
.
32.
Liu
,
P.
,
Li
,
X.
,
Liu
,
X.
,
Feng
,
M.
,
Yu
,
Y.
,
Hu
,
D.
, and
Dao
,
M.
,
2021
, “
Investigation on Non-Equilibrium Phase Transition in Wave Rotor
,”
Int. J. Refrig.
,
124
, pp.
96
104
.
33.
ANSYS FLUENT
,
2014
, “Ansys Fluent Theory Guide 14.0," ANSYS Inc., PA.
34.
Hu
,
D.
,
Wang
,
J.
,
Wu
,
M.
,
Liu
,
T.
,
Zhao
,
Y.
, and
Yu
,
Y.
,
2020
, “
Unsteady Heat Transfer Between Gas and Tube in a Wave Rotor Refrigerator
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
054502
.
35.
Liu
,
P.
,
Wu
,
K.
,
Liu
,
S.
,
Tan
,
W.
,
Zhu
,
C.
, and
Hu
,
D.
,
2018
, “
Mechanism Analysis of Weakening Reverse Compression Waves in Gas Wave Refrigerator
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061013
.
36.
Anderson
,
J. D.
, Jr.
,
2003
,
Compressible Flow: With Historical Perspective
, 3rd ed.,
Mcgraw-Hill
,
New York
.
37.
Li
,
X.
, and
Guo
,
R.
,
1999
, “
On Resonance of Gas Column in an Oscillatory Tube
,”
Acta Aeronaut. Astronaut. Sin.
,
20
(
2
), pp.
97
99
. https://hkxb.buaa.edu.cn/EN/Y1999/V20/I2/97
38.
Britan
,
A.
,
Karpov
,
A. V.
,
Vasilev
,
E. I.
,
Igra
,
O.
,
Ben-Dor
,
G.
, and
Shapiro
,
E.
,
2004
, “
Experimental and Numerical Study of Shock Wave Interaction With Perforated Plates
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
399
409
.
39.
Ohtomo
,
F.
,
Ohtani
,
K.
, and
Takayama
,
K.
,
2005
, “
Attenuation of Shock Waves Propagating Over Arrayed Baffle Plates
,”
Shock Waves
,
14
(
5–6
), pp.
379
390
.
40.
Pavan Kumar
,
C. H. V. L. C. S.
,
Hitesh Reddy
,
C.
,
Rahul Sai
,
L.
,
Dharani Kumar
,
K. S. S.
, and
Nagaraja
,
S. R.
,
2017
, “
Attenuation of Shock Waves Using Perforated Plates
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
225
, p.
012059
.
41.
Pramod
,
B. V. N.
,
Raj
,
J. P.
,
Parashar
,
C. H.
,
Kartha
,
A.
, and
Nagaraja
,
S. R.
,
2019
, “
Attenuation of Shock Waves by Using Porous Media
,”
AIP Conf. Proc.
,
2080
(
1
), p.
030015
.
You do not currently have access to this content.