Abstract

This paper proposes a new cascade waste heat recovery system with low power consumption and the ability to recover waste heat in a wider temperature range, namely, the absorption–compression coupled heat pump system. Simulations were conducted to reveal the effects of generator inlet and outlet water temperatures, supply hot water inlet and outlet water temperatures, and intermediate temperature on system performance. The results demonstrate that the coefficient of performance and exergy efficiency of the new system increase with an increase in generator outlet water temperature. The coefficient of performance and exergy efficiency of the new system decrease with an increase in supply heating water outlet water temperature. The coefficient of performance of the new system decreases with an increase in supply heating water inlet water temperature, while the exergy efficiency increases with an increase in supply heating water inlet water temperature. As the intermediate temperature increases, the coefficient of performance of the new system shows an increasing trend, and the exergy efficiency shows a decreasing trend. In addition, compared to the single-effect absorption heat pump system, the new system can recover heat at lower heat source temperatures, and compared to the compression heat pump system, it can reduce electricity consumption.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Lakew
,
A. A.
, and
Bolland
,
O.
,
2010
, “
Working Fluids for Low-Temperature Heat Source
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1262
1268
.
2.
Jiang
,
J. D.
,
Hu
,
B.
,
Wang
,
R. Z.
,
Deng
,
N.
,
Cao
,
F.
, and
Wang
,
C. C.
,
2022
, “
A Review and Perspective on Industry High-Temperature Heat Pumps
,”
Renewable Sustain. Energy Rev.
,
161
, p.
112106
.
3.
Chamoun
,
M.
,
Rulliere
,
R.
,
Haberschill
,
P.
, and
Peureux
,
J. L.
,
2014
, “
Experimental and Numerical Investigations of a New High Temperature Heat Pump for Industrial Heat Recovery Using Water as Refrigerant
,”
Int. J. Refrig.
,
44
, pp.
177
188
.
4.
Carballo
,
J. A.
,
Bonilla
,
J.
,
Roca
,
L.
,
Calle
,
A. D. L.
, and
Palenzuela
,
P.
,
2020
, “
Optimal Operation of Solar Thermal Desalination Systems Coupled to Double-Effect Absorption Heat Pumps
,”
Energy Convers. Manage.
,
210
, pp.
1
11
.
5.
Hou
,
J.
,
Che
,
D.
,
Liu
,
Y.
, and
Jiang
,
Q. W.
,
2018
, “
A New System of Absorption Heat Pump vs Boiler for Recovering Heat and Water Vapor in Flue Gas
,”
Energy Proc.
,
152
, pp.
1266
1271
.
6.
Mehari
,
A.
,
Xu
,
Z. Y.
, and
Wang
,
R. Z.
,
2020
, “
Thermal Energy Storage Using Absorption Cycle and System: A Comprehensive Review
,”
Energy Convers. Manage.
,
206
, pp.
1
18
.
7.
Rodrigue
,
L. F. N.
,
Paiguy
,
A. N. W.
, and
Brigitte
,
A. M. N.
,
2019
, “
Exergetic, Ecological and Thermo-Economic (3E) Optimization of an Absorption Heat Pump With Heat Resistance, Heat Leakage and Two Internal Irreversibilities: Comparison
,”
Int. J. Refrig.
,
112
, pp.
251
261
.
8.
Ye
,
B.
,
Liu
,
J.
, and
Xu
,
X.
,
2015
, “
A New Open Absorption Heat Pump for Latent Heat Recovery From Moist Gas
,”
Energy Convers. Manage.
,
94
, pp.
438
446
.
9.
Lars
,
W.
,
Roger
,
H.
, and
Jonathan
,
F.
,
2012
, “
Flue Gas Purification and Heat Recovery: A Biomass Fired Boiler Supplied With an Open Absorption System
,”
Appl. Energy
,
96
, pp.
444
450
.
10.
Thang
,
T. N.
,
Dieu
,
N. V.
, and
Bach
,
H. D.
,
2016
, “
Cuckoo Search Algorithm for Combined Heat and Power Economic Dispatch
,”
Int. J. Electr. Power Energy Syst.
,
81
, pp.
204
214
.
11.
Arun
,
M. B.
,
Maiya
,
M. P.
, and
Murthy
,
S. S.
,
2001
, “
Performance Comparison of Double-Effect Parallel-Flow and Series Flow Water-Lithium Bromide Absorption Systems
,”
Appl. Therm. Eng.
,
21
(
12
), pp.
1273
1279
.
12.
Pouria
,
A.
,
Ibrahim
,
D.
, and
Marc
,
A. R.
,
2014
, “
Thermoeconomic Multi-objective Optimization of a Novel Biomass-Based Integrated Energy System
,”
Energy
,
68
, pp.
958
970
.
13.
Garousi
,
F. L.
,
Mahmoudi
,
S. M. S.
,
Rosen
,
M. A.
,
Yari
,
M.
, and
Amidpour
,
M.
,
2013
, “
Exergoeconomic Analysis of Double Effect Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
65
, pp.
12
25
.
14.
Omer
,
K.
,
Kenan
,
S.
, and
Faruk
,
K.
,
2015
, “
Energy and Exergy Analysis of a Double Effect Absorption Refrigeration System Based on Different Heat Sources
,”
Energy Convers. Manage.
,
106
, pp.
21
30
.
15.
Alvarez
,
M. E.
,
Esteve
,
X.
, and
Bourouis
,
M.
,
2015
, “
Performance Analysis of a Triple-Effect Absorption Cooling Cycle Using Aqueous (Lithium, Potassium, Sodium) Nitrate Solution as a Working Pair
,”
Appl. Therm. Eng.
,
79
, pp.
27
36
.
16.
Xu
,
Z. Y.
,
Gao
,
J. T.
, and
Mao
,
H. C.
,
2020
, “
Double-Section Absorption Heat Pump for the Deep Recovery of Low-Grade Waste Heat
,”
Energy Convers. Manage.
,
220
, pp.
1
13
.
17.
Jeong
,
S.
,
Kang
,
B. H.
, and
Karng
,
S. W.
,
2002
, “
Dynamic Simulation of an Absorption Heat Pump for Recovering Low Grade Waste Heat
,”
Appl. Therm. Eng.
,
18
(
1–2
), pp.
1
12
.
18.
Izquierdo
,
M.
,
Venegas
,
M.
,
García
,
N.
, and
Palacios
,
E.
,
2005
, “
Exergetic Analysis of a Double Stage LiBr-H2O Thermal Compressor Cooled by Air/Water and Driven by Low Grade Heat
,”
Energy Convers. Manage.
,
46
(
7/8
), pp.
1029
1042
.
19.
Venegas
,
M.
,
2002
, “
Thermodynamic Study of Multistage Absorption Cycles Using Low-Temperature Heat
,”
Fuel Energy Abstr.
,
26
(
8
), pp.
175
191
.
20.
Ma
,
Z.
,
Bao
,
H.
, and
Roskilly
,
A. P.
,
2017
, “
Numerical Study of a Hybrid Absorption-Compression High Temperature Heat Pump for Industrial Waste Heat Recovery
,”
Front Energy
,
11
(
4
), pp.
503
509
.
21.
Christian
,
S.
,
Martin
,
H.
, and
Thomas
,
E.
,
2019
, “
Flexible Heat Pump or Chiller With Hybrid Water/LiBr Absorption/Compression Cycle
,”
Int. J. Refrig.
,
105
, pp.
178
187
.
22.
Ayou
,
D. S.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2017
, “
Integration of a Mechanical and Thermal Compressor Booster in Combined Absorption Power and Refrigeration Cycles
,”
Energy
,
135
, pp.
327
341
.
23.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2015
, “
Thermodynamic Modelling and Parametric Study of a Low Temperature Vapour Compression-Absorption System Based on Modified Gouy-Stodola Equation
,”
Energy
,
79
, pp.
407
418
.
24.
Colorado
,
D.
, and
Rivera
,
W.
,
2015
, “
Performance Comparison Between a Conventional Vapor Compression and Compression-Absorption Single-Stage and Double-Stage Systems Used for Refrigeration
,”
Appl. Therm. Eng.
,
87
, pp.
273
285
.
25.
Dixit
,
M.
,
Arora
,
A.
, and
Kaushik
,
S. C.
,
2017
, “
Thermodynamic and Thermoeconomic Analyses of Two Stage Hybrid Absorption Compression Refrigeration System
,”
Appl. Therm. Eng.
,
113
, pp.
120
131
.
26.
Kim
,
J. S.
,
Ziegler
,
F.
, and
Lee
,
H.
,
2002
, “
Simulation of the Compressor-Assisted Triple-Effect H2O/LiBr Absorption Cooling Cycles
,”
Appl. Therm. Eng.
,
22
(
3
), pp.
295
308
.
27.
Lin
,
P.
,
Wang
,
R. Z.
,
Xia
,
Z. Z.
, and
Ma
,
Q.
,
2009
, “
Experimental Investigation on Heat Transportation Over Long Distance by Ammonia-Water Absorption Cycle
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2331
2339
.
You do not currently have access to this content.