Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The current study focuses on a polymer devolatilization process in a device called a contactor, which involves the use of superheated steam to eliminate volatile cyclohexane, through evaporation, from the polymer mixture, also known as cement. The primary objective is to analyze the cement particle distribution and how it relates to the cyclohexane content at the exit or the devolatilization efficiency. The study develops a computational fluid dynamics (CFD) model that solves the turbulent steam flow as a continuous phase and the flow of cement droplets as a discrete phase. Following validation of the CFD model by comparing cement particle size distribution at the exit of the contactor to experimental data, a comprehensive analysis of the same is conducted through a series of 69 different CFD calculations to understand its influence on the evaporation of the volatile in the polymer mixture. Two metrics are developed here: a cluster distribution index (CDI) based on the actual particle pairwise distances and a new mass-CDI based on the radial distribution of masses. It is demonstrated that by relating the CDI and mass-CDI to the reduction in the cyclohexane content in the contactor, these metrics can be utilized to achieve the desirable input conditions in this polymer processing operation. Through a detailed examination of the particle dynamics in a steam contactor under various conditions, this study assists the polymer manufacturing industry in optimizing the devolatilization process for better steam savings and improved product quality.

References

1.
Fang
,
Z.
,
Shuai
,
Y.
,
Huang
,
Z.
,
Wang
,
J.
, and
Yang
,
Y.
,
2024
, “
Intensification of Polyethylene Devolatilization in Twin-Screw Extruder With Additives
,”
Polym. Eng. Sci.
,
64
(
7
), pp.
2961
2974
.
2.
Albalak
,
R.
, ed.,
1996
,
Polymer Devolatilization
,
Routledge
,
New York
.
3.
Dierkes
,
W.
, and
Noordermeer
,
J. W.
,
2007
, “
Modeling and Practice of Ethanol-Devolatilization of Silica-Silane Rubber Compounds in an Internal Mixer
,”
Int. Polym. Process.
,
22
(
3
), pp.
259
265
.
4.
Hirschfeld
,
S.
, and
Wünsch
,
O.
,
2020
, “
Mass Transfer During Bubble-Free Polymer Devolatilization: A Systematic Study of Surface Renewal and Mixing Effects
,”
Heat Mass Transfer
,
56
(
1
), pp.
25
36
.
5.
Gabor
,
K. M.
,
Shindle
,
B.
, and
Chandy
,
A. J.
,
2017
, “
CFD Investigation of Control Parameters in a Steam Contactor Used in Polymer Devolatilization
,”
Int. J. Therm. Sci.
,
120
, pp.
19
30
.
6.
Shindle
,
B.
, and
Chandy
,
A. J.
,
2022
, “
Numerical Investigations of Polymer Sheet Breakup and Secondary Phase Change Processes in Steam Contactors
,”
Exp. Comput. Multiph. Flow
,
4
, pp.
71
82
.
7.
Ravindranath
,
K.
, and
Mashelkar
,
R.
,
1988
, “
Analysis of the Role of Stripping Agents in Polymer Devolatilization
,”
Chem. Eng. Sci.
,
43
(
3
), pp.
429
442
.
8.
Favelukis
,
M.
, and
Albalak
,
R.
,
1996
,
Polymer Devolatilization
,
R. J.
Albalak
, ed.,
Marcel Dekker
,
New York
, p.
103
.
9.
Latinen
,
G. A.
,
1962
,
Devolatilization of Viscous Polymer Systems
,
ACS Publications
,
Washington, DC
.
10.
Coughlin
,
R.
, and
Canevari
,
G.
,
1969
, “
Drying Polymers During Screw Extrusion
,”
AIChE J.
,
15
(
4
), pp.
560
564
.
11.
Roberts
,
G. W.
,
1970
, “
A Surface Renewal Model for the Drying of Polymers During Screw Extrusion
,”
AIChE J.
,
16
(
5
), pp.
878
882
.
12.
Biesenberger
,
J. A.
, and
Kessidis
,
G.
,
1982
, “
Devolatilization of Polymer Melts in Single-Screw Extruders
,”
Polym. Eng. Sci.
,
22
(
13
), pp.
832
835
.
13.
Todd
,
D. B.
,
1975
, “
Residence Time Distribution in Twin-Screw Extruders
,”
Polym. Eng. Sci.
,
15
(
6
), pp.
437
443
.
14.
Collins
,
G.
,
Denson
,
C.
, and
Astarita
,
G.
,
1985
, “
Determination of Mass Transfer Coefficients for Bubble-Free Devolatilization of Polymeric Solutions in Twin-Screw Extruders
,”
AIChE J.
,
31
(
8
), pp.
1288
1296
.
15.
Secor
,
R.
,
1986
, “
A Mass Transfer Model for a Twin-Screw Extruder
,”
Polym. Eng. Sci.
,
26
(
9
), pp.
647
652
.
16.
Tomiyama
,
H.
,
Takamoto
,
S.
,
Shintani
,
H.
, and
Inoue
,
S.
,
2009
, “
Devolatilization Analysis in a Twin Screw Extruder by Using the Flow Analysis Network (FAN) Method
,”
Seikei-Kakou
,
19
(
9
), pp.
565
574
.
17.
Woyuan
,
L.
,
Wei
,
W.
,
Haikui
,
Z.
,
Guangwen
,
C.
,
Lei
,
S.
, and
Jianfeng
,
C.
,
2010
, “
A Mass Transfer Model for Devolatilization of Highly Viscous Media in Rotating Packed Bed
,”
Chin. J. Chem. Eng.
,
18
(
2
), pp.
194
201
.
18.
Luo
,
K.
,
Shao
,
C.
,
Chai
,
M.
, and
Fan
,
J.
,
2019
, “
Level Set Method for Atomization and Evaporation Simulations
,”
Prog. Energy Combust. Sci.
,
73
, pp.
65
94
.
19.
Xu
,
Z.
,
Han
,
Z.
, and
Qu
,
H.
,
2020
, “
Comparison Between Lagrangian and Eulerian Approaches for Prediction of Particle Deposition in Turbulent Flows
,”
Powder Technol.
,
360
, pp.
141
150
.
20.
Al-Qadasi
,
H.
, and
Ozkan
,
G. M.
,
2021
, “
CFD Analysis of Biomass Steam Gasification in Fluidized Bed Gasifier: A Parametric Study by the Assessment of Drying Stage
,”
Energy Sources Part A: Recovery Util. Environ. Eff.
,
43
(
19
), pp.
2369
2390
.
21.
Black
,
W. J.
,
Denissen
,
N. A.
, and
McFarland
,
J. A.
,
2017
, “
Evaporation Effects in Shock-Driven Multiphase Instabilities
,”
J. Fluid Eng.
,
139
(
7
), p.
071204
.
22.
Dahal
,
J.
, and
McFarland
,
J. A.
,
2017
, “
A Numerical Method for Shock Driven Multiphase Flow With Evaporating Particles
,”
J. Comput. Phys.
,
344
, pp.
210
233
.
23.
Duke-Walker
,
V.
,
Allen
,
R.
,
Maxon
,
W. C.
, and
McFarland
,
J. A.
,
2020
, “
A Method for Measuring Droplet Evaporation in a Shock-Driven Multiphase Instability
,”
Int. J. Multiph. Flow.
,
133
, p.
103464
.
24.
Duke-Walker
,
V.
,
Maxon
,
W. C.
,
Almuhna
,
S. R.
, and
McFarland
,
J. A.
,
2021
, “
Evaporation and Breakup Effects in the Shock-Driven Multiphase Instability
,”
J. Fluid Mech.
,
908
, p.
A13
.
25.
Gabor
,
K. M.
,
Shindle
,
B.
, and
Chandy
,
A. J.
,
2017
, “
CFD Simulations of Polymer Devolatilization in Steam Contactors
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
273
292
.
26.
Shindle
,
B.
, and
Chandy
,
A. J.
,
2019
,
Computational Investigations of Polymer Sheet Breakup for Optimization of Devolatilization Processes in Steam Contactors
,
WIT Press
,
Southampton, UK
.
27.
Das
,
S. R.
,
Dhakal
,
P.
,
Poudyal
,
H.
, and
Chandy
,
A. J.
,
2016
, “
Assessment of the Effect of Speed Ratios in Numerical Simulations of Highly Viscous Rubber Mixing in a Partially Filled Chamber
,”
Rubber Chem. Technol.
,
89
(
3
), pp.
371
391
.
28.
Das
,
S. R.
,
Poudyal
,
H.
, and
Chandy
,
A. J.
,
2017
, “
Numerical Investigation of Effect of Rotor Phase Angle in Partially-Filled Rubber Mixing
,”
Int. Polym. Process.
,
32
(
3
), pp.
343
354
.
29.
Das
,
S. R.
,
Dhakal
,
P.
, and
Chandy
,
A. J.
,
2017
, “
Comparison of Three Rotor Designs for Rubber Mixing Using Computational Fluid Dynamics
,”
Sci. Technol.
,
45
(
4
), pp.
259
287
.
30.
Dhakal
,
P.
,
Das
,
S. R.
, and
Chandy
,
A. J.
,
2017
, “
Investigation of Fill Factor in Two-Wing Rotor Mixing of Rubber by Using Computational Fluid Dynamics
,”
Sci. Technol.
,
45
(
2
), pp.
144
160
.
31.
Poudyal
,
H.
,
Ahmed
,
I.
, and
Chandy
,
A. J.
,
2019
, “
Three-Dimensional, Non-isothermal Simulations of the Effect of Speed Ratio in Partially-Filled Rubber Mixing
,”
Int. Polym. Process.
,
34
(
2
), pp.
219
230
.
32.
Ahmed
,
I.
, and
Chandy
,
A. J.
,
2019
, “
3D Numerical Investigations of the Effect of Fill Factor on Dispersive and Distributive Mixing of Rubber Under Non-isothermal Conditions
,”
Polym. Eng. Sci.
,
59
(
3
), pp.
535
546
.
33.
Wilcox
,
D.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries, Incorporated
,
La Cañada, CA
.
34.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.
35.
Burns
,
A. D.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J. -M.
,
2006
, “
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
,”
Proceedings of the 5th International Conference on Multiphase Flow
,
Yokohama, Japan
,
May 30–June 4
, Paper No. 392, pp.
1
17
.
36.
ANSYS Inc.
,
2020
, “Ansys Fluent Theory Guide 2020,” ANSYS Academic Research, Help System.
37.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2007
, “
Turbulent Schmidt Numbers for CFD Analysis With Various Types of Flowfield
,”
Atmos. Environ.
,
41
(
37
), pp.
8091
8099
.
38.
Reynolds
,
A.
,
1975
, “
The Prediction of Turbulent Prandtl and Schmidt Numbers
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1055
1069
.
39.
Yeung
,
P.
,
Xu
,
S.
, and
Sreenivasan
,
K.
,
2002
, “
Schmidt Number Effects on Turbulent Transport With Uniform Mean Scalar Gradient
,”
Phys. Fluids
,
14
(
12
), pp.
4178
4191
.
40.
Goldberg
,
U. C.
,
Palaniswamy
,
S.
,
Batten
,
P.
, and
Gupta
,
V.
,
2010
, “
Variable Turbulent Schmidt and Prandtl Number Modeling
,”
Eng. Appl. Comput. Fluid Mech.
,
4
, pp.
511
520
.
41.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
J. Fluid Eng.
,
116
(
3
), pp.
405
413
.
42.
Kambezidis
,
H. D.
,
2012
, “
The Solar Resource
,”
Compr. Renew. Energy
, pp.
27
84
.
You do not currently have access to this content.