Abstract

In order to use single heat pipe for multiple heat sources in electronics and space applications, a multibranch heat pipe with two evaporators and a condenser is developed with 20 internal grooves as a wick structure. An experimental investigation is carried out in the present study for axially grooved multibranch heat pipe (AGMBHP) by considering various parameters to obtain the best possible operating condition. AGMBHP is investigated for different filling ratios (range, 75–200%) in a horizontal orientation for equal heat loads (0–240 W) and unequal heat loads (0–120 W) on evaporators. Heat pipe is tested for dynamic characteristics for an optimum filling ratio range of 125–150%. Further, condenser cooling flowrate analysis and different orientation study is carried out and compared for horizontal, gravity-assisted, antigravity, and compound positions to understand the performance of heat pipe. AGMBHP is capable to transmit 240 W heat load with a minimum resistance of 0.192 °C/W in horizontal orientation. The optimum condenser cooling water flowrate is found to be 5 ml/s under tested conditions. AGMBHP is capable of providing effective thermal conductivity as high as 31,824 W/m°C, which is quite suitable for electronics cooling. Orientation study revealed that horizontal orientation is comparatively better amongst all the other orientations for AGMBHP.

References

1.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
, and
Keshavarzi
,
A.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
31
(
4
), pp.
801
815
.
2.
Xianping
,
C.
,
Huaiyu
,
Y.
,
Xuejun
,
F.
,
Tianling
,
R.
, and
Guoqi
,
Z.
,
2016
, “
A Review of Small Heat Pipes for Electronics
,”
Appl. Therm. Eng.
,
96
, pp.
1
17
.
3.
Reay
,
D.
, and
Kew
,
P.
,
2006
,
Heat Pipes Theory, Design and Applications
, 5th ed.,
Elsevier
,
New York
.
4.
Zohuri
,
B.
,
2016
,
Heat Pipe Design and Technology
, 2nd ed,
Springer
,
New York
.
5.
Moon
,
S. H.
,
Hwang
,
G.
,
Ko
,
S. C.
, and
Kim
,
Y. T.
,
2004
, “
Experimental Study on the Thermal Performance of Micro-Heat Pipe With Cross-Section of Polygon
,”
Micro Electron. Reliab.
,
44
(
2
), pp.
315
321
.
6.
Hoang
,
T. T.
, and
Ku
,
J.
,
2008
, “
Heat and Mass Transfer in Loop Heat Pipes
,”
Proceedings of the ASME 2003 Heat Transfer Summer Conference
, Vol.
2
,
Las Vegas, NV
,
July 21–23, 2003
, pp.
485
493
, ASME Paper No. HT2003-47366.
7.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice: A Sourcebook
,
Hemisphere Publishing
,
Washington, DC
, pp.
33
78
.
8.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2007
, “
A Mathematical Model Predicting Heat Transfer Performance in a Oscillating Heat Pipe
,”
Proceedings of IPACK2007, ASME InterPACK 2007, Conference
,
British Columbia, Canada
,
July 8–12
,
ASME
Paper No. IPACK2007-33246.
9.
Liu
,
X.
,
Chen
,
X.
,
Zhang
,
Z.
, and
Chen
,
Y.
,
2020
, “
Thermal Performance of a Novel Dual-Serpentine-Channel Flat-Plate Oscillating Heat Pipe Used for Multiple Heat Sources and Sinks
,”
Int. J. Heat Mass Transfer
,
161
, p.
120293
.
10.
Mashaei
,
P. R.
,
Shahryari
,
M.
,
Fazeli
,
H.
, and
Hosseinalipour
,
S. M.
,
2016
, “
Numerical Simulation of Nanofluid Application in a Horizontal Mesh Heat Pipe With Multiple Heat Sources: A Smart Fluid for High Efficiency Thermal System
,”
Appl. Therm. Eng.
,
100
, pp.
1016
1030
.
11.
Han
,
X.
,
Wang
,
Y.
, and
Liang
,
Q.
,
2018
, “
Investigation of the Thermal Performance of a Novel Flat Heat Pipe Sink With Multiple Heat Sources
,”
Int. Comm. Heat Mass Transfer
,
94
, pp.
71
76
.
12.
Boo
,
H.
, and
Gon Kim
,
H.
,
2017
, “
Experimental Study on the Performance Characteristics of a Cylindrical Heat Pipe Having a Screen Wick Subject to Multiple Heat Sources
,”
Appl. Therm. Eng.
,
126
, pp.
1209
1215
.
13.
Zhang
,
R.
,
Yan
,
L.
, and
Wu
,
C.
,
2019
, “
Experimental Study on the Effect of Various Heat Source Configurations on the Thermal Performance of an Axial Swallow-Tailed Micro-Grooved Heat Pipe
,”
Heat Mass Transfer
,
56
(
4
), pp.
1237
1248
.
14.
Cai
,
Y.
,
Li
,
Z.
,
Zhai
,
J.
,
Tang
,
Y.
, and
Yu
,
B.
,
2017
, “
Experimental Investigation on a Novel Multi Branch Heat Pipe for Multi-Heat Source Electronics
,”
Int. J. Heat Mass Transfer
,
104
, pp.
467
477
.
15.
Huang
,
J.
,
Xiang
,
J.
,
Chu
,
X.
,
Sun
,
W.
,
Liu
,
R.
,
Ling
,
W.
,
Zhou
,
W.
, and
Tao
,
S.
,
2021
, “
Thermal Performance of Flexible Branch Heat Pipe
,”
Appl. Therm. Eng.
,
186
, p.
116532
.
16.
Phan
,
N.
,
Saito
,
Y.
,
Katayama
,
N.
, and
Nagano
,
H.
,
2021
, “
Operating Characteristics of a Dual Flat-Evaporator Loop Heat Pipe for Single Heat Source Cooling in Any Orientation
,”
Int. J. Heat Mass Transfer
,
172
, p.
121146
.
17.
Zhang
,
H.
,
Xu
,
H.
, and
Tian
,
C.
,
2021
, “
Startup Influencing Factor Investigation and Quantitative Interaction Analysis on a Loop Thermosyphon With Multiple Evaporators
,”
Case Stud. Therm. Eng.
,
28
, p.
101460
.
18.
Lataoui
,
Z.
,
Romestant
,
C.
,
Bertin
,
Y.
,
Jemni
,
A.
, and
Petit
,
D.
,
2010
, “
Inverse Thermal Analysis of the Drying Zone of the Evaporator of an Axially Grooved Heat Pipe
,”
Exp. Therm. Fluid. Sci.
,
34
(
5
), pp.
562
574
.
19.
Anand
,
A. R.
,
2021
, “
Effect of Various Parameters on Heat Transport Capability of Axially Grooved Heat Pipes
,”
Therm. Sci. Eng. Prog.
,
24
, p.
100890
.
20.
Nattadi
,
R.
, and
Kanth
,
A. R.
,
2017
, “
CFD Analysis of Axially Wicked Heat Pipe
,”
IJITR
,
5
(
3
), pp.
6416
6424
.
21.
Bhatt
,
A. A.
,
Jain
,
S. V.
, and
Patel
,
R. N.
,
2022
, “
Experimental Investigation on Performance Analysis on Wickless Thermosiphon Heat Pipe With Two Heat Sources and Multiple Branches
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101006
.
22.
Fravallo
,
P. Y.
,
Prat
,
M.
, and
Platel
,
V.
,
2022
, “
Numerical Study of Flow and Heat Transfer in the Vapour Grooves of a Loop Heat Pipe Evaporator
,”
Int. J. Therm. Sci.
,
171
, p.
107198
.
23.
Huanga
,
G.
,
Li
,
W.
,
Zhongc
,
G.
,
Abdulshaheeda
,
A. A.
, and
Li
,
C.
,
2021
, “
Optimizing L-Shaped Heat Pipes With Partially-Hybrid Mesh-Groove Wicking Structures
,”
Int. J. Heat Mass Transfer
,
170
, p.
120926
.
24.
Jianga
,
L.
,
Tang
,
Y.
,
Panb
,
M.
,
Zhoua
,
W.
, and
Lub
,
L.
,
2012
, “
Phase Change Flattening Process for Axial Grooved Heat Pipe
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
331
338
.
25.
Zhong
,
G.
,
Ding
,
X.
,
Tang
,
Y.
,
Yu
,
S.
,
Chen
,
G.
,
Tang
,
H.
, and
Li
,
Z.
,
2018
, “
Various Orientations Research on Thermal Performance of Novel Multi-Branch Heat Pipes With Different Sintered Wicks
,”
Energy Convers. Manage.
,
166
, pp.
512
521
.
26.
Omur
,
C.
,
Uygur
,
A. B.
, and
Horuz
,
I.
,
2017
, “
The Effect of Manufacturing Limitations on Groove Design and Its Implementation to an Algorithm for Determining Heat Transport Capability of Heat Pipes
,”
J. Therm. Sci. Technol.
,
37
, pp.
159
170
.
27.
Kilne
,
S. J.
,
1985
, “
The Purposes of Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
153
160
.
28.
Kim
,
K. M.
,
Jeong
,
Y. S.
,
Kim
,
I. G.
, and
Bang
,
I. C.
,
2015
, “
Comparison of Thermal Performances of Water-Filled, SiC Nanofluid-Filled and SiC Nanoparticles-Coated Heat Pipes
,”
Int. J. Heat Mass Transfer
,
88
, pp.
862
871
.
29.
Valentin
,
G.
,
Sulaiman
,
A.
, and
Hussam
,
J.
,
2019
, “
Nucleate Pool Boiling Heat Transfer in Wickless Heat Pipes (Two-Phase Closed Thermosiphon): A Critical Review of Correlations
,”
Ther. Sci. Eng. Prog.
,
13
, p.
100384
.
30.
Zhang
,
H. Y.
,
Mui
,
Y. C.
, and
Tarin
,
M.
,
2010
, “
Analysis of Thermoelectric Cooler Performance for High Power Electronic Packages
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
561
568
.
31.
Zhu
,
K.
,
Li
,
X.
,
Wang
,
Y.
,
Chen
,
X.
, and
Li
,
H.
,
2017
, “
Dynamic Performance of Loop Heat Pipes for Cooling of Electronics
,”
Proceedings of the 9th International Conference on Applied Energy, ICAE Energy Procedia
, Vol.
142
,
Cardiff, UK
,
Aug. 21–24
, pp.
4163
4168
.
32.
Tang
,
H.
,
Tang
,
Y.
,
Li
,
J.
,
Sun
,
Y.
,
Liang
,
G.
, and
Peng
,
R.
,
2018
, “
Experimental Investigation of the Thermal Performance of Heat Pipe with Multi-Heat Source and Double-End Cooling
,”
Appl. Therm. Eng.
,
131
, pp.
159
166
.
You do not currently have access to this content.