Abstract

Typical electromagnetic heating techniques include induction heating (IH) and contact heating (CH). The study of these techniques in welding has always been a controversial topic owing to the lack of straightforward quantitative analysis of heat transfer characteristics. Therefore, to explore the comparative nature of heat transfer in CH and IH, high-frequency welding of ferromagnetic materials was studied. Our results revealed quantitative differences between the two heating methods in terms of heating rate and intercritical heat-affected zone (ICHAZ). Compared with IH, CH resulted in a higher active current accumulating at the V-shaped angle of a welded pipe and a greater heating rate for a thick-walled pipe, because of variable magnetic flux leakage in IH. Given identical electrical input, the area of the heat-affected zone (HAZ) in the case of CH was found to be <1/2 of that in the case of IH, which is the root cause of why the area of performance optimization in localized heat treatment of a contact welded pipe is much smaller than that in the case of induction welding. Our study also reveals that IH resulted in a smaller temperature gradient and more uniform temperature distribution than CH, which is the main reason why heating quality in induction welding is superior to that of contact welding. Such comparison between IH and CH in terms of welding quality and energy utilization helps reveal the intrinsic rules of high-frequency electromagnetic heating and provide scientific data and a rationale for promotion of electromagnetic heating in more applications.

References

1.
Pain
,
S.
,
2017
, “
Power Through the Ages
,”
Nature
,
551
(
11
), pp.
S134
S137
.
2.
Ye
,
L.
,
Liang
,
C.
,
Liu
,
Y.
,
Li
,
D.
, and
Liu
,
Z.
,
2019
, “
Performance Analysis and Test of a Novel Eddy-Current Braking & Heating System for Electric Bus
,”
Energy Convers. Manage.
,
183
(
2
), pp.
440
449
.
3.
Jouilel
,
N.
,
Radouani
,
M.
, and
El Fahime
,
B.
,
2021
, “
Wind Turbine’s Gearbox Aided Design Approach Using Bond Graph Methodology and Monte Carlo Simulation
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
8
(
1
), pp.
89
101
.
4.
Du
,
L.
,
Xia
,
L.
,
Li
,
X.
,
Qiu
,
L.
,
Lai
,
Z.
,
Chen
,
Q.
,
Cao
,
Q.
,
Han
,
X.
, and
Li
,
L.
,
2021
, “
Adjustable Current Waveform via Altering the Damping Coefficient: A New Way to Reduce Joule Heating in Electromagnetic Forming Coils
,”
J. Mater. Process. Technol.
,
293
(
6
), p.
117086
.
5.
Rhein
,
S.
, and
Graichen
,
K.
,
2018
, “
Constrained Trajectory Planning and Actuator Design for Electromagnetic Heating Systems
,”
Control Eng. Pract.
,
74
(
5
), pp.
191
203
.
6.
Okada
,
N.
,
Sakamoto
,
H.
,
Matsuo
,
T.
, and
Takatani
,
K.
,
2012
, “
Numerical Analysis Model of Electric Resistance Welding Pipe
,”
Tetsu-to-Hagane
,
98
(
7
), pp.
368
377
.
7.
Ravin
,
R.
,
Cai
,
T. X.
,
Pursley
,
R. H.
,
Garmendia-Cedillos
,
M.
,
Pohida
,
T.
,
Freidlin
,
R. Z.
,
Wang
,
H.
, et al
,
2020
, “
A Novel In Vitro Device to Deliver Induced Electromagnetic Fields to Cell and Tissue Cultures
,”
Biophys. J.
,
119
(
12
), pp.
2378
2390
.
8.
Liu
,
K.
,
Dai
,
D.
,
Pan
,
S.
,
Wang
,
F.
,
Hou
,
C.
, and
Xu
,
P.
,
2020
, “
Numerical Investigation and Thermal Predictions of Asphalt Pavement Containing Inductive Materials Under Alternating Magnetic Field
,”
Int. J. Therm. Sci.
,
153
(
7
), p.
106353
.
9.
Gendron
,
M.
,
Hazel
,
B.
,
Boudreault
,
E.
,
Champliaud
,
H.
, and
Pham
,
X.-T.
,
2020
, “
Coupled Thermo-Electromagnetic Model of a New Robotic High-Frequency Local Induction Heat Treatment System for Large Steel Components
,”
Appl. Therm. Eng.
,
150
(
3
), pp.
372
385
.
10.
Ciobanu
,
R.
,
Schreiner
,
C.
, and
Damian
,
R.
,
2019
, “
High Frequency Electromagnetic Energy Phenomena in Chiral Dielectric Structures With Distributed and Localized Conductive Insertions
,”
Composites, Part B
,
160
(
3
), pp.
241
248
.
11.
Liu
,
Y.
,
Iwata
,
K.
,
Sanda
,
S.
,
Nishiyama
,
M.
, and
Tani
,
M.
,
2021
, “
Development of Curved Braces Partially Strengthened by Induction Heating
,”
Eng. Struct.
,
233
(
4
), p.
111754
.
12.
Liu
,
Y.
,
Nishiyama
,
M.
,
Tani
,
M.
,
Kurata
,
M.
, and
Iwata
,
K.
,
2021
, “
Steel Beam With Web Opening Reinforced by Induction Heating
,”
J. Constr. Steel Res.
,
176
(
11
), p.
106399
.
13.
Bao
,
L.
,
Wang
,
B.
,
You
,
X.
,
Li
,
H.
,
Gu
,
Y.
, and
Liu
,
W.
,
2021
, “
Numerical and Experimental Research on Localized Induction Heating Process for Hot Stamping Steel Sheets
,”
Int. J. Heat Mass Transfer
,
151
(
4
), p.
119422
.
14.
Cao
,
L. X.
,
Yin
,
T.
,
Jin
,
M. X.
, and
He
,
Z.-Z.
,
2019
, “
Flexible Circulated-Cooling Liquid Metal Coil for Induction Heating
,”
Appl. Therm. Eng.
,
162
(
11
), p.
114260
.
15.
Mouallem
,
J.
, and
Hickey
,
J. P.
,
2020
, “
Induction Heating of Dispersed Metallic Particles in a Turbulent Flow
,”
Int. J. Multiphase Flow
,
132
(
11
), p.
103414
.
16.
Han
,
Y.
,
Yu
,
E. L.
, and
Zhao
,
T. X.
,
2016
, “
Three-Dimensional Analysis of Medium-Frequency Induction Heating of Steel Pipes Subject to Motion Factor
,”
Int. J. Heat Mass Transfer
,
101
(
10
), pp.
452
460
.
17.
Gies
,
S.
, and
Tekkaya
,
A. E.
,
2017
, “
Effect of Workpiece Deformation on Joule Heat Losses in Electromagnetic Forming Coils
,”
Procedia Eng.
,
207
(
9
), pp.
341
346
.
18.
Drobenko
,
B.
,
Vankevych
,
P.
,
Ryzhov
,
Y.
, and
Yakovlev
,
M.
,
2017
, “
Rational Approaches to High Temperature Induction Heating
,”
Int. J. Eng. Sci.
,
117
(
8
), pp.
34
50
.
19.
Li
,
F.
,
Li
,
X.
,
Wang
,
T.
,
Rong
,
Y.
, and
Liang
,
S. Y.
,
2020
, “
In-Process Residual Stresses Regulation During Grinding Through Induction Heating With Magnetic Flux Concentrator
,”
Int. J. Mech. Sci.
,
172
(
8
), p.
105393
.
20.
Sun
,
R.
,
Shi
,
Y.
,
Bing
,
Z.
,
Li
,
Q.
, and
Wang
,
R.
,
2019
, “
Metal Transfer and Thermal Characteristics in Drop-on-Demand Deposition Using Ultra-High Frequency Induction Heating Technology
,”
Appl. Therm. Eng.
,
149
(
2
), pp.
731
744
.
21.
Yang
,
Y. H.
,
Liu
,
X. F.
, and
Wang
,
S. Q.
,
2020
, “
Thermal Characteristics of Induction Heating With Stepped Diameter Mold During Two-Phase Zone Continuous Casting High-Strength Aluminum Alloys
,”
Int. J. Heat Mass Transfer
,
152
(
5
), p.
119479
.
22.
Hossan
,
M. R.
, and
Dutta
,
P.
,
2012
, “
Effects of Temperature Dependent Properties in Electromagnetic Heating
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3412
3422
.
23.
Han
,
Y.
,
Yu
,
E.
,
Huang
,
D. C.
, and
Zhang
,
L.
,
2014
, “
Simulation and Analysis of Residual Stress and Microstructure Transformation for Post Weld Heat Treatment of a Welded Pipe
,”
ASME J. Pressure Vessel Technol.
,
136
(
2
), p.
021401
.
24.
Zhang
,
L.
,
Yuan
,
J.
,
He
,
S.
,
Huang
,
S.
,
Xiong
,
S.
,
Shi
,
T.
, and
Xuan
,
J.
,
2021
, “
Contact Heat Transfer Analysis Between Mechanical Surfaces Based on Reverse Engineering and FEM
,”
Tribol. Int.
,
161
(
9
), p.
107097
.
25.
Wang
,
Y.
,
Gao
,
B.
,
Tian
,
G.
,
Woo
,
W. L.
, and
Miao
,
Y.
,
2016
, “
Diffusion and Separation Mechanism of Transient Electromagnetic and Thermal Fields
,”
Int. J. Therm. Sci.
,
102
(
4
), pp.
308
318
.
26.
Cho
,
K. H.
,
2012
, “
Coupled Electro-Magneto-Thermal Model for Induction Heating Process of a Moving Billet
,”
Int. J. Therm. Sci.
,
60
(
10
), pp.
195
204
.
27.
Han
,
Y.
,
Xiao
,
Y.
,
Yu
,
E. L.
, and
Wang
,
L.-M.
,
2018
, “
Electromagnetic Heating and Motion Mechanism for Contact Welded Pipes Based on a Node Sequential Number Method
,”
Appl. Therm. Eng.
,
137
(
6
), pp.
822
835
.
28.
Kang
,
C.
,
Shi
,
C.
,
Liu
,
Z.
,
Jiang
,
X.
,
Chen
,
S.
, and
Ma
,
C.
,
2020
, “
Research on the Optimization of Welding Parameters in High-Frequency Induction Welding Pipeline
,”
J. Manuf. Processes
,
59
(
11
), pp.
772
790
.
29.
Jo
,
M. C.
,
Lee
,
S. G.
,
Sohn
,
S. S.
,
Kim
,
K.-S.
,
Kim
,
W.-K.
,
Lee
,
C. S.
, and
Lee
,
S.
,
2017
, “
Effects of Coiling Temperature and Pipe-Forming Strain on Yield Strength Variation After ERW Pipe Forming of API X70 and X80 Linepipe Steels
,”
Mater. Sci. Eng. A
,
682
(
1
), pp.
304
311
.
30.
Yan
,
P.
,
Güngör
,
ÖE
,
Thibaux
,
P.
,
Liebeherr
,
M.
, and
Bhadeshia
,
H. K. D. H.
,
2011
, “
Tackling the Toughness of Steel Pipes Produced by High Frequency Induction Welding and Heat-Treatment
,”
Mater. Sci. Eng. A
,
528
(
29–30
), pp.
8492
8499
.
31.
Tian
,
P.
,
Xu
,
K.
,
Lu
,
G. P.
,
Qiao
,
G.-Y.
,
Liao
,
B.
, and
Xiao
,
F.-R.
,
2018
, “
Evaluation of the Mechanical Properties of the X52 High Frequency Electric Resistance Welding Pipes
,”
Int. J. Press. Vessels Pip.
,
165
(
8
), pp.
59
67
.
32.
Jakubovičová
,
L.
,
Andrej
,
G.
,
Peter
,
K.
, and
Milan
,
S.
,
2016
, “
Optimization of the Induction Heating Process in Order to Achieve Uniform Surface Temperature
,”
Procedia Eng.
,
136
(
4
), pp.
125
131
.
33.
Han
,
W.
,
Chau
,
K. T.
, and
Lam
,
W. H.
,
2019
, “
All-Utensil Domestic Induction Heating System
,”
Energy Convers. Manage.
,
195
(
9
), pp.
1035
1043
.
34.
Zuo
,
L. L.
,
Ma
,
J.
, and
Luo
,
H. F.
,
2011
, “
The Effect Factors on HAZ Width in HFW Pipe Production Line
,”
Welded Pipe Tube (Chinese Translation)
,
34
(
3
), pp.
54
56
.
35.
Sun
,
J.
,
Liang
,
H. X.
,
Ma
,
J. S.
, and
Zang
,
Z. S.
,
2022
, “
Research on Heat Treatment Process for Grade J55 External-Upset Oil Pipe End
,”
Heat Treat. (Chinese Translation)
,
37
(
2
), pp.
28
36
.
You do not currently have access to this content.