Abstract

Pool boiling is extensively used in high- and low-temperature heat exchangers as it results in a high heat transfer coefficient compared to natural and single-phase forced convection. Pool boiling experimental study conducted over a plain cylindrical surface (PS) and four external micro-finned cylindrical surfaces (MFCSs), with R123 and R141b at different pressures in the heat flux range 20–100 kW/m2, is presented in this paper. The objective of the present study is to explore the effect of pressure, surface characteristics, and fluid properties on pool boiling heat transfer over plain and micro-finned cylindrical surfaces. The boiling performance improved at a higher pressure, irrespective of the working fluid used for all the test surfaces. It was found that, with the rise in pressure, the boiling heat transfer coefficient (BHTC) for the MFCSs increases at a higher rate than the PS. In comparison with PS, the average rise in the BHTC with pressure, for the MFCS-1, MFCS-2, MFCS-3, and MFCS-4 with R123 were 69.3% to 84.3%, 3.3% to 9.9%, 16.9% to 22.4%, and 29.4% to 40.2%, respectively. The higher BHTC over micro-finned cylindrical surfaces results due to more nucleation site results from lower surface wettability and micro-finned geometry. It was observed that the pool boiling over the plain surface with R123 results in higher BHTC compared with R141b at all tested pressures, whereas the pool boiling characteristics over MFCSs varied based on the combined effect of micro-finned surface geometry, surface wettability, heat flux, pressure and fluid properties. The bubble departure diameters over all the surfaces were measured at 30 W, 60 W, and 90 W at different pressures, and a new model of bubble departure diameter was proposed based on dimensionless terms. The total mean absolute error (MAE) of the proposed bubble departure diameter model was about 6.79% for the whole range of data points.

References

1.
Acharya
,
A.
, and
Pise
,
A.
,
2017
, “
A Review on Augmentation of Heat Transfer in Boiling Using Surfactants/Additives
,”
Heat Mass Transfer
,
53
(
4
), pp.
1457
1477
.
2.
Bon
,
B.
,
Klausner
,
J. F.
, and
Mckenna
,
E.
,
2013
, “
The Hoodoo: A New Surface Structure for Enhanced Boiling Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011003
.
3.
Joshi
,
P.
,
Patil
,
A. K.
, and
Kumar
,
M.
,
2022
, “
Pool Boiling Heat Transfer Enhancement Using Perforated Twisted Tape Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
6
), p.
064501
.
4.
Ribatski
,
G.
, and
Thome
,
J. R.
,
2006
, “
Nucleate Boiling Heat Transfer of R134a on Enhanced Tubes
,”
Appl. Therm. Eng.
,
26
(
10
), pp.
1018
1031
.
5.
Park
,
K. J.
, and
Jung
,
D.
,
2010
, “
Nucleate Boiling Heat Transfer Coefficients of R1234yf on Plain and Low Fin Surfaces
,”
Int. J. Refrig.
,
33
(
3
), pp.
553
557
.
6.
Jung
,
D.
,
An
,
K.
, and
Park
,
J.
,
2004
, “
Nucleate Boiling Heat Transfer Coefficients of HCFC22, HFC134a, HFC125 and HFC32 on Various Enhanced Tubes
,”
Int. J. Refrig.
,
27
(
2
), pp.
202
206
.
7.
Memory
,
S. B.
,
Sugiyama
,
D. C.
, and
Marto
,
P. J.
,
1995
, “
Nucleate Pool Boiling of R-114 and R-114-Oil Mixtures From Smooth and Enhanced Surfaces-I. Single Tubes
,”
Int. J. Heat Mass Transfer
,
38
(
8
), pp.
1347
1361
.
8.
Kwak
,
H. J.
,
Kim
,
J. H.
,
Myung
,
B. S.
,
Kim
,
M. H.
, and
Kim
,
D. E.
,
2018
, “
Behavior of Pool Boiling Heat Transfer and Critical Heat Flux on High Aspect-Ratio Microchannels
,”
Int. J. Therm. Sci.
,
125
(
July 2017
), pp.
111
120
.
9.
Esawy
,
M.
,
Malayeri
,
M. R.
, and
Müller-Steinhagen
,
H.
,
2010
, “
Crystallization Fouling of Finned Tubes During Pool Boiling: Effect of Fin Density
,”
Heat Mass Transfer
,
46
(
10
), pp.
1167
1176
.
10.
Saidi
,
M. H.
,
Ohadi
,
M.
, and
Souhar
,
M.
,
1999
, “
Enhanced Pool Boiling of R-123 Refrigerant on Two Selected Tubes
,”
Appl. Therm. Eng.
,
19
(
8
), pp.
885
895
.
11.
Webb
,
R. L.
, and
Pais
,
C.
,
1992
, “
Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1893
1904
.
12.
Ahmad
,
S. W.
,
Lewis
,
J. S.
,
McGlen
,
R. J.
, and
Karayiannis
,
T. G.
,
2014
, “
Pool Boiling on Modified Surfaces Using R-123
,”
Heat Transfer Eng.
,
35
(
16–17
), pp.
1491
1503
.
13.
Chen
,
T.
,
2013
, “
An Experimental Investigation of Nucleate Boiling Heat Transfer From an Enhanced Cylindrical Surface
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
355
361
.
14.
Mehta
,
J. S.
, and
Kandlikar
,
S. G.
,
2013
, “
Pool Boiling Heat Transfer Enhancement Over Cylindrical Tubes With Water at Atmospheric Pressure, Part I: Experimental Results for Circumferential Rectangular Open Microchannels
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1205
1215
.
15.
Mehta
,
J. S.
, and
Kandlikar
,
S. G.
,
2013
, “
Pool Boiling Heat Transfer Enhancement Over Cylindrical Tubes With Water at Atmospheric Pressure, Part II: Experimental Results and Bubble Dynamics for Circumferential V-Groove and Axial Rectangular Open Microchannels
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1216
1225
.
16.
Rocha
,
S. P.
,
Kannengieser
,
O.
,
Cardoso
,
E. M.
, and
Passos
,
J. C.
,
2013
, “
Nucleate Pool Boiling of R-134a on Plain and Micro-Finned Tubes
,”
Int. J. Refrig.
,
36
(
2
), pp.
456
464
.
17.
Dehghani-Ashkezari
,
E.
, and
Salimpour
,
M. R.
,
2018
, “
Effect of Groove Geometry on Pool Boiling Heat Transfer of Water-Titanium Oxide Nanofluid
,”
Heat Mass Transfer
,
54
(
11
), pp.
3473
3481
.
18.
Liao
,
L.
,
Bao
,
R.
, and
Liu
,
Z.
,
2008
, “
Compositive Effects of Orientation and Contact Angle on Critical Heat Flux in Pool Boiling of Water
,”
Heat Mass Transfer
,
44
(
12
), pp.
1447
1453
.
19.
Gorenflo
,
D.
,
Chandra
,
U.
,
Kotthoff
,
S.
, and
Luke
,
A.
,
2004
, “
Influence of Thermophysical Properties on Pool Boiling Heat Transfer of Refrigerants
,”
Int. J. Refrig.
,
27
(
5
), pp.
492
502
.
20.
Bier
,
K.
, and
Lambert
,
M.
,
1990
, “
Heat Transfer in Nucleate Boiling of Different Low Boiling Substances
,”
Int. J. Refrig.
,
13
(
5
), pp.
293
300
.
21.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.
22.
Wang
,
Y.
,
Zhang
,
J.
, and
Ma
,
Z.
,
2019
, “
Experimental Study of Pool Boiling on a Novel Reentrant Cavity Tube Surface With R134a
,”
Int. J. Heat Mass Transfer
,
135
, pp.
124
130
.
23.
Shah
,
B.
,
Shah
,
K.
, and
Lakhera
,
V.
,
2022
, “
Experimental Study on Nucleate Pool Boiling Heat Transfer of R141b Over Plain and Micro-Finned Cylindrical Surfaces at Different Pressure
,”
Multiph. Sci. Technol.
,
34
(
1
), pp.
67
94
.
24.
Shah
,
B.
,
Shah
,
K.
,
Patel
,
P.
, and
Lakhera
,
V. J.
,
2022
, “
Experimental Investigations on Nucleate Pool Boiling Over Micro-Finned Cylindrical Surfaces
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
236
(
11
), pp.
6284
6296
.
25.
Ji
,
W. T.
,
Lu
,
X. D.
,
Cheng
,
D. Y.
,
Sun
,
N.
,
Chen
,
L.
, and
Tao
,
W. Q.
,
June 2021
, “
Effect of Wettability on Nucleate Pool Boiling Heat Transfer of a Low Surface Tension Fluid Outside Horizontal Finned Tubes
,”
Int. Comm. Heat Mass Transfer
,
125
, p. 105340.
26.
Chen
,
H.
,
Chen
,
G.
,
Zou
,
X.
,
Yao
,
Y.
, and
Gong
,
M.
,
2017
, “
Experimental Investigations on Bubble Departure Diameter and Frequency of Methane Saturated Nucleate Pool Boiling at Four Different Pressures
,”
Int. J. Heat Mass Transfer
,
112
, pp.
662
675
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
28.
Gorenflo
,
D.
, and
Kenning
,
D.
,
2010
, “H2 Pool Boiling,”
VDI Heat Atlas
,
Springer Berlin
,
Heidelberg, Germany
, pp.
757
792
.
29.
Ribatski
,
G.
, and
Jabardo
,
J. M. S.
,
2003
, “
Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4439
4451
.
30.
Jung
,
D.
,
Kim
,
Y.
,
Ko
,
Y.
, and
Song
,
K.
,
2003
, “
Nucleate Boiling Heat Transfer Coefficients of Pure Halogenated Refrigerants
,”
Int. J. Refrig.
,
26
(
2
), pp.
240
248
.
31.
Stephan
,
K.
, and
Abdelsalam
,
M.
,
1980
, “
Heat-Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
(
1
), pp.
73
87
.
32.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
(
C
), pp.
157
239
.
33.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
, NIST Chemistry WebBook,”
NIST Standard Reference Database Number 69
,
National Institute of Standards and Technology
,
Gaithersburg MD
, p.
20899
.
34.
Zimmermann
,
M.
,
Heinz
,
M.
,
Sielaff
,
A.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2020
, “
Influence of System Pressure on Pool Boiling Regimes on a Microstructured Surface Compared to A Smooth Surface
,”
Exp. Heat Transfer
,
33
(
4
), pp.
318
334
.
35.
Dahariya
,
S.
, and
Betz
,
A. R.
,
2019
, “
High Pressure Pool Boiling: Mechanisms for Heat Transfer Enhancement and Comparison to Existing Models
,”
Int. J. Heat Mass Transfer
,
141
, pp.
696
706
.
36.
Rainey
,
K. N.
, and
You
,
S. M.
,
2001
, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer From Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2589
2599
.
37.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
3
), pp.
659
669
.
38.
Ebrahimi-Dehshali
,
M.
,
Najm-Barzanji
,
S. Z.
, and
Hakkaki-Fard
,
A.
,
2018
, “
Pool Boiling Heat Transfer Enhancement by Twisted-Tape Fins
,”
Appl. Therm. Eng
,
135
, pp.
170
177
.
39.
Moita
,
A. S.
,
Teodori
,
E.
, and
Moreira
,
A. L. N.
,
2015
, “
Influence of Surface Topography in the Boiling Mechanisms
,”
Int. J. Heat Fluid Flow
,
52
, pp.
50
63
.
40.
Fritz
,
W.
,
1935
, “
Berechnung Des Maximal Volume von Dampf Blasen
,”
Phys. Z
,
36
, pp.
379
388
.
41.
Cole
,
R.
, and
Shulman
,
H. I.
,
1966
, “
Bubble Departure Diameters at Subatmospheric Pressures
,”
Chem. Eng. Prog. Symp. Ser.
,
62
(
64
), pp.
6
16
.
42.
Cole
,
R.
,
1967
, “
Bubble Frequencies and Departure Volumes at Subatmospheric Pressures
,”
AIChE J.
,
13
(
4
), pp.
779
783
.
43.
Cole
,
R.
, and
Rohsenow
,
W.
,
1969
, “
Correlation of Bubble Departure Diameters for Boiling of Saturated Liquids
,”
Chem. Eng. Prog. Symp. Ser.
,
65
(
92
), pp.
211
213
.
44.
Kutateladze
,
S. S.
, and
Gogonin
,
I. I.
,
1979
, “
Growth Rate and Detachment Diameter of Vapor Bubble in Free Convection Boiling of Saturated Liquid
,”
Teplofiz. Vysok. Temp.
,
17
(
4
), pp.
792
797
.
45.
Jensen
,
G. J.
, and
Memmel
,
M. K.
,
1986
, “
Evaluation of Bubble Departure Diameter Correlations
,”
Proceedings of the Eighth International Heat Transfer Conference
,
San Francisco, CA
,
Aug. 17–22, 1986
, pp.
1907
1912
.
46.
Kim
,
J.
, and
Kim
,
M. H.
,
2006
, “
On the Departure Behaviors of Bubble at Nucleate Pool Boiling
,”
Int. J. Multiph. Flow
,
32
(
10–11
), pp.
1269
1286
.
47.
Hamzekhani
,
S.
,
Maniavi Falahieh
,
M.
, and
Akbari
,
A.
,
2014
, “
Bubble Departure Diameter in Nucleate Pool Boiling at Saturation: Pure Liquids and Binary Mixtures
,”
Int. J. Refrig.
,
46
, pp.
50
58
.
48.
Walunj
,
A.
, and
Sathyabhama
,
A.
,
2019
, “
Bubble Dynamics and Enhanced Heat Transfer During High-Pressure Pool Boiling on Rough Surface
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
309
321
.
49.
Gupta
,
M. K.
,
Sharma
,
D. S.
, and
Lakhera
,
V. J.
,
2017
, “
Detachment Forces on Spherical Bubble During Formation
,”
Mater. Today Proc.
,
4
(
2
), pp.
4130
4136
.
50.
Gupta
,
M. K.
,
Sharma
,
D. S.
, and
Lakhera
,
V. J.
,
2016
, “
Vapor Bubble Formation, Forces, and Induced Vibration: A Review
,”
ASME Appl. Mech. Rev
,
68
(
3
), p.
030801
.
51.
Zeng
,
L. Z.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems- I. Pool Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2261
2270
.
52.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zeng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.
53.
Alavi Fazel
,
S. A.
, and
Shafaee
,
S. B.
,
2010
, “
Bubble Dynamics for Nucleate Pool Boiling of Electrolyte Solutions
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
8
), p.
081502
.
You do not currently have access to this content.