Abstract

In the present study, a novel solar still incorporated with fins and phase change material (PCM)-based energy storage was designed. To investigate the influence of fins and energy storage unit, four cases of stills were considered. In case I, a conventional type was considered, whereas square hollow fins were fitted over the basin liner of the still in case II. In addition to fins as in case II, case III employs an energy storage unit wherein PCM was packed beneath the basin liner. Case IV was similar to case III except for the extension of fins into the storage unit. The addition of fins above the basin liner improved the absorber surface area and the extension of the same beneath the basin liner enhanced the storage efficiency. Experiments were carried out on all the four modules with a constant basin water depth of 2 cm. The maximum productivity of the conventional solar still was found to be 3.25 L/m2/day. On the other hand, the results reveal improvement in productivity of 17.54%, 48.61%, and 55.69% with cases II, III, and IV, respectively. Although stills with energy storage units exhibited higher exergy efficiency, the presence of fins in the PCM increases the internal irreversibilities. The cost of water yielded by modified solar still (MSS) used in case IV is proved to be less as compared to conventional solar still (CSS). Further, the payback period of MSS is found to be lesser than that of CSS.

References

1.
Sathyamurthy
,
R.
,
Samuel
,
H. D. G.
,
Nagarajan
,
P. K.
, and
El-Agouz
,
S. A.
,
2015
, “
A Review of Different Solar Still for Augmenting Fresh Water Yield
,”
J. Environ. Sci. Technol.
,
8
(
6
), pp.
244
265
.
2.
García-Rodríguez
,
L.
,
2007
, “Assessment of Most Promising Developments in Solar Desalination,”
Solar Desalination for the 21st Century
,
Springer
,
Dordrecht
, pp.
355
369
.
3.
Kaushal
,
A.
, and
Varun
,
2010
, “
Solar Stills: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
446
453
.
4.
Shatat
,
M.
,
Mark
,
W.
, and
Saffa
,
R.
,
2013
, “
Opportunities for Solar Water Desalination Worldwide: Review
,”
Sustain. Cities Soc.
,
9
, pp.
67
80
.
5.
Kalita
,
P.
,
Anupam
,
D.
, and
Sangeetha
,
B.
,
2016
, “
A Review on Recent Developments in Solar Distillation Units
,”
Sadhana.
,
41
(
2
), pp.
203
223
.
6.
Sampathkumar
,
K.
,
Arjunan
,
T. V.
,
Pitchandi
,
P.
, and
Senthilkumar
,
P.
,
2010
, “
Active solar distillation—A detailed review
,”
Renew. Sustain. Energy Rev.
,
14
(
6
), pp.
1503
1526
.
7.
Selvaraj
,
K.
, and
Alagumurthi
,
N.
,
2018
, “
Factors Influencing the Performance and Productivity of Solar Stills—A Review
,”
Desalination
,
435
, pp.
181
187
.
8.
Ajit
, and
Gupta
,
N. K.
,
2021
, “
Progresses in Solar Still Technology With Phase Change Material Progresses in Solar Still Technology With Phase Change Material
,”
IOP Conference Series: Materials Science and Engineering
,
Mathura, India
,
Dec. 18–19
, Vol. 1116, p.
012055
.
9.
Rajaseenivasan
,
T.
,
Tinnokesh
,
A. P.
,
Rajesh Kumar
,
G.
, and
Srithar
,
K.
,
2016
, “
Glass Basin Solar Still With Integrated Preheated Water Supply—Theoretical and Experimental Investigation
,”
Desalination
,
398
, pp.
214
221
.
10.
Velmurugan
,
V.
,
Deenadayalan
,
C. K.
,
Vinod
,
H,K
, and
Srithar
,
K.
,
2008
, “
Desalination of Effluent Using Fin Type Solar Still
,”
Energy
,
33
(
11
), pp.
1719
1727
.
11.
Alaian
,
W. M.
,
Elnegiry
,
E. A.
, and
Ahmed
,
M. H.
,
2016
, “
Experimental Investigation on the Performance of Solar Still Augmented With Pin-Finned Wick
,”
Desalination
,
379
, pp.
10
15
.
12.
Rajaseenivasan
,
T.
, and
Srithar
,
K.
,
2016
, “
Performance Investigation on Solar Still With Circular and Square Fins in Basin With CO2 Mitigation and Economic Analysis
,”
Desalination
,
380
, pp.
66
74
.
13.
Omara
,
Z. M.
,
Mofreh
,
H. H.
, and
Kabeel
,
A. E.
,
2011
, “
Performance of Finned and Corrugated Absorbers Solar Stills Under Egyptian Conditions
,”
Desalination
,
277
, pp.
281
287
.
14.
Rabhi
,
K.
,
Rached
,
N.
,
Faouzi
,
N.
,
Ali
,
C.
, and
Habib
,
B. B.
,
2017
, “
Experimental Performance Analysis of a Modified Single-Basin Single-Slope Solar Still With Pin Fins Absorber and Condenser
,”
Desalination
,
416
, pp.
86
93
.
15.
Abdallah
,
S.
,
Mazen
,
M. A.
, and
Omar
,
B.
,
2009
, “
Effect of Various Absorbing Materials on the Thermal Performance of Solar Stills
,”
Desalination
,
242
, pp.
128
137
.
16.
Tabrizi
,
F. F.
, and
Ashkan
,
Z. S.
,
2010
, “
Experimental Study of an Integrated Basin Solar Still With a Sandy Heat Reservoir
,”
Desalination
,
253
, pp.
195
199
.
17.
El-Sebaii
,
A. A.
,
Yaghmour
,
S. J.
,
Al-Hazmi
,
F. S.
,
Faidah
,
A. S.
,
Al-Marzouki
,
F. M.
, and
Al-Ghamdi
,
A. A.
,
2009
, “
Active Single Basin Solar Still With a Sensible Storage Medium
,”
Desalination
,
249
(
2
), pp.
699
706
.
18.
Kabeel
,
A. E.
, and
Mohamed
,
A.
,
2016
, “
Improving the Performance of Solar Still by Using PCM as a Thermal Storage Medium Under Egyptian Conditions
,”
Desalination
,
383
, pp.
22
28
.
19.
Ghalambaz
,
M. A.
,
Izadpanahi
,
D. E.
, and
Chamkha
,
A. J.
,
2017
, “
Phase-Change Heat Transfer in a Cavity Heated From Below : The Effect of Utilizing Single or Hybrid Nanoparticles as Additives
,”
J. Taiwan Inst. Chem. Eng.
,
72
, pp.
104
115
.
20.
Khan
,
A.
,
Karmakar
,
R.
,
Sarker
,
M. R. I.
,
Tuly
,
S. S.
, and
Beg
,
R. A.
,
2019
, “
Experimental Investigation of Single Basin Solar Still Using Phase Change Material (PCM) as an Energy Storage Medium
,”
AIP Conf. Proc.
,
2121
(
July
), p.
120002
.
21.
Thalib
,
M. M.
,
Athikesavan
,
M.
,
Essa
,
F. A.
,
Vasimalai
,
N.
,
Sathyamurthy
,
R.
,
Marquez
,
G.
, and
P
,
F.
,
2020
, “
Comparative Study of Tubular Solar Stills With Phase Change Material and Nano-enhanced Phase Change Material
,”
Energies
,
13
(
15
), p.
3989
.
22.
Alagu
,
K.
,
Reddy
,
S.
,
Kumar
,
N.
, and
Arul
,
A.
,
2020
, “
Solar Desalination Using Solar Still Enhanced by PCM and Nano Fluid
,”
AIP Conf. Proc.
,
2311
(
December
), p.
090008
.
23.
Mohammed
,
A. H.
,
2021
, “
Performance Enhancement of Single-Slope Solar Still Using Phase Change Materials
,”
Environ. Sci. Pollut. Res.
,
28
(
14
), pp.
17098
17108
.
24.
Al-harahsheh
,
M.
,
Abu-Arabi
,
M.
,
Mousa
,
H.
, and
Alzghoul
,
Z.
,
2018
, “
Solar Desalination Using Solar Still Enhanced by External Solar Collector and PCM
,”
Appl. Therm. Eng.
,
128
, pp.
1030
1040
.
25.
Abuelnuor
,
A. A. A.
,
Omara
,
A. A. M.
,
Musa
,
H. M. H.
,
Abaza
,
S. H.
,
Adam
,
M. A. E.
, and
Abdalraheem
,
M. O. O.
,
2021
, “
Experimental Study on Solar Still Desalination System Integrated with Solar Collector and Phase Change Material
,”
International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)
,
Khartoum, Sudan
,
Feb. 26–28
, pp.
22
26
.
26.
Sharshir
,
S. W.
,
Elsheikh
,
A. H.
,
Edreis
,
E. M. A.
,
Ali
,
H. K. A.
,
Sathyamurthy
,
R.
,
Kabeel
,
A. E.
,
Zang
,
J.
, and
Tang
,
N.
,
2019
, “
Improving the Solar Still Performance by Using Thermal Energy Storage Materials : A Review of Recent Developments
,”
Desalin. Water Treat.
,
165
, p.
24362
.
27.
Panchal
,
H.
,
Patel
,
K.
,
Elkanawy
,
M.
, and
Alm-eldin
,
H.
,
2019
, “
A Use of Various Phase Change Materials on Performance of Solar Still : A Review
,”
Int. J. Ambient Energy
,
42
(
13
), pp.
1575
1580
.
28.
Omara
,
A. A. M.
,
Abuelnuor
,
A. A. A.
,
Mohammed
,
H. A.
, and
Khiadani
,
M.
,
2020
, “
Phase Change Materials (PCMs) for Improving Solar Still Productivity: A Review
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
1585
1617
.
29.
El-Dalatony
,
M. M.
,
Jeon
,
B. H.
,
El-Sayed
,
S.
,
Eraky
,
M.
,
Kim
,
W. B.
,
Wang
,
J.
, and
Ahn
,
T.
,
2019
, “
Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines
,”
Energies
,
12
(
6
), pp.
1
23
.
30.
Sonkar
,
V. K.
,
Chakraborty
,
J. P.
,
Sarkar
,
A.
, and
Singh
,
R. K.
,
2019
, “
Solar Distillation Using Three Different Phase Change Materials Stored in a Copper Cylinder
,”
Energy Rep.
,
5
, pp.
1532
1542
.
31.
Bose
,
P.
, and
Amirtham
,
V. A.
,
2016
, “
A Review on Thermal Conductivity Enhancement of Paraffin Wax as Latent Heat Energy Storage Material
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
81
100
.
32.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2225
2244
.
33.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2013
, “
Preparation and Thermal Characterization of Paraffin/Metal Foam Composite Phase Change Material
,”
Appl. Energy
,
112
, pp.
1357
1366
.
34.
Joshi
,
V.
, and
Rathod
,
M. K.
,
2019
, “
Thermal Performance Augmentation of Metal Foam Infused Phase Change Material Using a Partial Filling Strategy : An Evaluation for Fill Height Ratio and Porosity
,”
Appl. Energy
,
253
, p.
113621
.
35.
Zhao
,
W.
,
France
,
D. M.
,
Yu
,
W.
,
Kim
,
T.
, and
Singh
,
D.
,
2014
, “
Phase Change Material With Graphite Foam for Applications in High-Temperature Latent Heat Storage Systems of Concentrated Solar Power Plants
,”
Renew. Energy
,
69
, pp.
134
146
.
36.
Jegadheeswaran
,
S.
,
Sundaramahalingam
,
A.
, and
Pohekar
,
S.D.
,
2019
, “
High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems
,”
J. Therm. Anal. Calorim.
,
138
, pp.
1137
1166
.
37.
Ren
,
J.
,
Li
,
Q.
,
Lei
,
Y.
,
Jia
,
L.
,
Xiaolong
,
H.
,
Zhao
,
L.
,
Qichao
,
R.
, and
Fu
,
M.
,
2020
, “
Enhanced Thermal Conductivity of Epoxy Composites by Introducing Graphene @ Boron Nitride Nanosheets Hybrid Nanoparticles
,”
Mater. Des.
,
191
, p.
108663
.
38.
Safaei
,
M. R.
,
Goshayeshi
,
H. R.
, and
Chaer
,
I.
,
2019
, “
Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM
,”
Energies
,
12
(
10
), pp.
1
13
.
39.
Saeed
,
M.M.A.
,
Hachim
,
D.M.
, and
Hameed
,
H. G.
,
2019
, “
Numerical Investigation for Single Slope Solar Still Performance With Optimal Amount of Nano-PCM
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
63
(
2
), pp.
302
316
.
40.
Sonker
,
V. K.
,
Singh
,
R. K.
,
Chakraborty
,
J. P.
, and
Sarkar
,
A.
,
2021
, “
Performance Assessment of a Passive Solar Still Integrated With Thermal Energy Storage and Nanoparticle Stored in Copper Cylinders
,”
Int. J. Energy Res.
,
45
(
2
), pp.
2856
2869
.
41.
Dhaidan
,
N. S.
, and
Khodadadi
,
J. M.
,
2017
, “
Improved Performance of Latent Heat Energy Storage Systems Utilizing High Thermal Conductivity Fins: A Review
,”
J. Renew. Sustain. Energy.
,
9
(
3
), p.
034103
.
42.
Hassan
,
A. K.
,
Abdulateef
,
J.
,
Mahdi
,
M. S.
, and
Hasan
,
A. F.
,
2020
, “
Experimental Evaluation of Thermal Performance of Two Different Finned Latent Heat Storage Systems
,”
Case Stud. Therm. Eng.
,
21
, p.
100675
.
43.
Gharebaghi
,
M.
, and
Sezai
,
I.
,
2007
, “
Enhancement of Heat Transfer in Latent Heat Storage Modules With Internal Fins
,”
Numer. Heat Transf., Part A Appl. An Int. J. Comput. Methodol.
,
53
(
7
), pp.
749
765
.
44.
Ambarish
,
M.
, and
Choubey
,
G.
,
2020
, “
Improvement of Heat Transfer Through Fins : A Brief Review of Recent Developments
,”
Heat Transf.
,
49
(
3
), pp.
1658
1685
.
45.
Yousef
,
M. S.
,
Hassan
,
H.
,
Kodama
,
S.
, and
Sekiguchi
,
H.
,
2019
, “
An Experimental Study on the Performance of Single Slope Solar Still Integrated With a PCM-Based Pin-Finned Heat Sink
,”
Energy Procedia.
,
156
, pp.
100
104
.
46.
Suraparaju
,
S. K.
,
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2021
, “
Experimental and Economic Analysis of Energy Storage-Based Single-Slope Solar Still With Hollow-Finned Absorber Basin
,”
Heat Transf.
,
50
(
6
), pp.
5516
5537
.
47.
Rajaseenivasan
,
T.
,
Raja
,
P. N.
, and
Srithar
,
K.
,
2014
, “
An Experimental Investigation on a Solar Still With an Integrated Flat Plate Collector
,”
Desalination
,
347
, pp.
131
137
.
48.
Asbik
,
M.
,
Ansari
,
O.
,
Bah
,
A.
,
Zari
,
N.
,
Mimet
,
A.
, and
El-Ghetany
,
H.
,
2016
, “
Exergy Analysis of Solar Desalination Still Combined With Heat Storage System Using Phase Change Material (PCM)
,”
Desalination
,
381
, pp.
26
37
.
49.
Tiwari
,
G. N.
,
Dimri
,
V.
, and
Chel
,
A.
,
2009
, “
Parametric Study of an Active and Passive Solar Distillation System: Energy and Exergy Analysis
,”
Desalination
,
242
(
1–3
), pp.
1
18
.
50.
Agrawal
,
A.
, and
Rana
,
R. S.
,
2019
, “
Theoretical and Experimental Performance Evaluation of Single-Slope Single-Basin Solar Still With Multiple V-Shaped Floating Wicks
,”
Heliyon
,
5
(
4
), p.
e01525
.
You do not currently have access to this content.