Abstract

The flow of hybrid alumina–copper/water nanofluid with mixed convection heat transfer from multiple square cylinders arranged in three different types of arrays, namely equilateral triangle (ET), rotated square (RS), and rotated rhombus (RR) in a heat exchanger, has never been studied before the present study. Navier–Stokes and energy equations with a periodic boundary condition in the transverse direction for all three array types having the same porosity are solved with the finite volume methodology. The combined effect of aiding buoyancy (Richardson number 0–2), the configuration of square cylinders, and hybrid nanoparticle volume fraction (0-0.06) on the flow dynamics and their impact on the overall heat transfer phenomenon through three different array configurations is thoroughly elucidated. The arrays’ overall drag and friction coefficient increases with an increase in the strength of aiding buoyancy and nanoparticle volume fraction. An increment in Richardson number, and nanoparticle volume fraction, causes thermal boundary layer thinning and results in higher heat transfer rates across all three arrays. With an increase in Ri from 0 to 2 at a nanoparticle volume fraction of 0.06, the mean Nusselt number of ET, RS, and RR arrays is increased by 161%, 5%, and 32%, respectively. While, with an increase in nanoparticle volume fraction from 0 to 0.06 at Ri = 2, the mean Nusselt number of ET, RS, and RR arrays is augmented by 17%, 6%, and 9%, respectively. Finally, the efficient array configuration in terms of fluid-thermal behavior is proposed to design various heat-exchange systems under differing operating conditions.

References

1.
Wang
,
C.
,
1999
, “
Longitudinal Flow Past Cylinders Arranged in a Triangular Array
,”
Appl. Math. Model.
,
23
(
3
), pp.
219
230
.
2.
Eidsath
,
A.
,
Carbonell
,
R.
,
Whitaker
,
S.
, and
Herrmann
,
L.
,
1983
, “
Dispersion in Pulsed Systems—III: Comparison Between Theory and Experiments for Packed Beds
,”
Chem. Eng. Sci.
,
38
(
11
), pp.
1803
1816
.
3.
Astrom
,
B. T.
,
Pipes
,
R. B.
, and
Advani
,
S. G.
,
1992
, “
On Flow Through Aligned Fiber Beds and Its Application to Composites Processing
,”
J. Compos. Mater.
,
26
(
9
), pp.
1351
1373
.
4.
Mandhani
,
V.
,
Chhabra
,
R.
, and
Eswaran
,
V.
,
2002
, “
Forced Convection Heat Transfer in Tube Banks in Cross Flow
,”
Chem. Eng. Sci.
,
57
(
3
), pp.
379
391
.
5.
Kirsch
,
A. A.
, and
Fuchs
,
N.
,
1967
, “
Studies on Fibrous Aerosol Filters—II. Pressure Drops in Systems of Parallel Cylinders
,”
Ann. Occup. Hyg.
,
10
(
1
), pp.
23
30
.
6.
Sundar Raju
,
B. H.
,
Nath
,
D.
,
Pati
,
S.
, and
Baranyi
,
L.
,
2020
, “
Analysis of Mixed Convective Heat Transfer From a Sphere With an Aligned Magnetic Field
,”
Int. J. Heat Mass Transfer
,
162
(
9
), p.
120342
.
7.
Kiljański
,
T.
, and
Dziubiński
,
M.
,
1996
, “
Resistance to Flow of Molten Polymers Through Filtration Screens
,”
Chem. Eng. Sci.
,
51
(
19
), pp.
4533
4536
.
8.
Martin
,
A.
,
Saltiel
,
C.
, and
Shyy
,
W.
,
1998
, “
Frictional Losses and Convective Heat Transfer in Sparse, Periodic Cylinder Arrays in Cross Flow
,”
Int. J. Heat Mass Transfer
,
41
(
15
), pp.
2383
2397
.
9.
Saha
,
A. K.
, and
Chanda
,
S.
,
2019
, “
Fully-Developed Natural Convection in a Periodic Array of Pin-Fins
,”
Int. J. Therm. Sci.
,
137
(
5
), pp.
325
336
.
10.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
,
2001
, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1153
1159
.
11.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publishers Inc
,
New York
,
243
295
.
12.
Roychowdhury
,
D. G.
,
Das
,
S. K.
, and
Sundararajan
,
T.
,
2002
, “
Numerical Simulation of Laminar Flow and Heat Transfer Over Banks of Staggered Cylinders
,”
Int. J. Numer. Meth. Fluids
,
39
(
1
), pp.
23
40
.
13.
Asif
,
M.
, and
Dhiman
,
A.
,
2018
, “
Analysis of Laminar Flow Across a Triangular Periodic Array of Heated Cylinders
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
40
(
7
), pp.
1
24
.
14.
Ram
,
R. P.
,
Bharti
,
R. P.
, and
Dhiman
,
A. K.
,
2016
, “
Forced Convection Flow and Heat Transfer Across an In-line Bank of Circular Cylinders
,”
Can. J. Chemical Eng.
,
94
(
7
), pp.
1381
1395
.
15.
Wung
,
T.-S.
, and
Chen
,
C. J.
,
1989
, “
Finite Analytic Solution of Convective Heat Transfer for Tube Arrays in Crossflow: Part I—Flow Field Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
3
), pp.
633
640
.
16.
Chen
,
C. J.
, and
Wung
,
T.-S.
,
1989
, “
Finite Analytic Solution of Convective Heat Transfer for Tube Arrays in Crossflow: Part II—Heat Transfer Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
3
), pp.
641
648
.
17.
Zukauskas
,
A. A.
,
Ulinskas
,
R. V.
, and
Bubelis
,
E. S.
,
1978
, “
Average Heat Transfer and Pressure Drop in Cross Flow of Viscous Fluid Over a Tube Bundle at Low Reynolds Number
,”
Heat Transfer - Sov. Res.
,
10
(
6
), pp.
90
101
.
18.
Drummond
,
J.
, and
Tahir
,
M.
,
1984
, “
Laminar Viscous Flow Through Regular Arrays of Parallel Solid Cylinders
,”
Int. J. Multiphase Flow
,
10
(
5
), pp.
515
540
.
19.
Sparrow
,
E.
, and
Loeffler
,
A.
,
1959
, “
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
,”
AIChE J.
,
5
(
3
), pp.
325
330
.
20.
Sangani
,
A.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.
21.
Sangani
,
A.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Through a Periodic Array of Spheres
,”
Int. J. Multiphase Flow
,
8
(
4
), pp.
343
360
.
22.
Yu
,
D.
,
Barron
,
R. F.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
,
1995
, “
Mixed Convection From Horizontal Tube Banks Between Two Vertical Parallel
,”
Numer. Heat Transfer, Part A
,
27
(
4
), pp.
473
486
.
23.
Gowda
,
Y. T. K.
,
Narayana
,
P. A. A.
, and
Seetharamu
,
K. N.
,
1998
, “
Finite Element Analysis of Mixed Convection Over In-line Tube Bundles
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1613
1619
.
24.
Chatterjee
,
D.
, and
Raja
,
M.
,
2013
, “
Mixed Convection Heat Transfer Past In-line Square Cylinders in a Vertical Duct
,”
Therm. Sci.
,
17
(
2
), pp.
567
580
.
25.
Fornarelli
,
F.
,
Lippolis
,
A.
, and
Oresta
,
P.
,
2017
, “
Buoyancy Effect on the Flow Pattern and the Thermal Performance of an Array of Circular Cylinders
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
2
), p.
022501
.
26.
Pravesh
,
R.
,
Dhiman
,
A. K.
, and
Bharti
,
R. P.
,
2019
, “
Aiding Buoyancy Mixed Convection Flow and Thermal Features Across a Periodic Array of Heated Cylinders
,”
Int. J. Heat Mass Transfer
,
130
(
3
), pp.
1141
1162
.
27.
Sanyal
,
A.
, and
Dhiman
,
A.
,
2017
, “
Wake Interactions in a Fluid Flow Past a Pair of Side-by-Side Square Cylinders in Presence of Mixed Convection
,”
Phys. Fluids
,
29
(
10
), p.
103602
.
28.
Sanyal
,
A.
, and
Dhiman
,
A.
,
2018
, “
Effect of Thermal Buoyancy on a Fluid Flowing Past a Pair of Side-by-Side Square Bluff-Bodies in a Low-Reynolds Number Flow Regime
,”
Phys. Fluids
,
30
(
6
), p.
063603
.
29.
Asif
,
M.
, and
Dhiman
,
A.
,
2021
, “
Impact of Mixed Convection on Flow Dynamics and Heat Transfer Through an Isotropic Porous Triangular Array of Periodic Heated/Cooled Cylinders
,”
Can. J. Chem. Eng.
,
99
(
S1
), pp.
S838
S862
.
30.
Vijaybabu
,
T. R.
,
2019
, “
Influence of Permeable Circular Body and Nanofluid on Buoyancy-Driven Flow and Entropy Generation
,”
Int. J. Mech. Sci.
,
166
(
1
), p.
105240
.
31.
Sheikholeslami
,
M.
,
Haq
,
R.-U.
,
Shafee
,
A.
,
Li
,
Z.
,
Elaraki
,
Y. G.
, and
Tlili
,
I.
,
2019
, “
Heat Transfer Simulation of Heat Storage Unit With Nanoparticles and Fins Through a Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
135
(
6
), pp.
470
478
.
32.
Hajatzadeh Pordanjani
,
A.
,
Aghakhani
,
S.
,
Afrand
,
M.
,
Mahmoudi
,
B.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2019
, “
An Updated Review on Application of Nanofluids in Heat Exchangers for Saving Energy
,”
Energy Convers. Manage.
,
198
(
10
), p.
111886
.
33.
Sheikholeslami
,
M.
, and
Sadoughi
,
M. K.
,
2018
, “
Simulation of CuO-Water Nanofluid Heat Transfer Enhancement in Presence of Melting Surface
,”
Int. J. Heat Mass Transfer
,
116
(
1
), pp.
909
919
.
34.
Sheikholeslami
,
M.
,
2017
, “
Numerical Simulation of Magnetic Nanofluid Natural Convection in Porous Media
,”
Phys. Lett. A
,
381
(
5
), pp.
494
503
.
35.
Mikhailenko
,
S. A.
,
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2019
, “
Thermal Convection in Al2O3-Water Nano Liquid Rotating Chamber With a Local Isothermal Heater
,”
Int. J. Mech. Sci.
,
156
(
6
), pp.
137
145
.
36.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
MHD Pulsating Forced Convection of Nanofluid Over Parallel Plates With Blocks in a Channel
,”
Int. J. Mech. Sci.
,
157–158
(
7
), pp.
726
740
.
37.
Bouzerzour
,
A.
,
Djezzar
,
M.
,
Oztop
,
H. F.
,
Tayebi
,
T.
, and
Abu-Hamdeh
,
N.
,
2019
, “
Natural Convection in Nanofluid Filled and Partially Heated Annulus: Effect of Different Arrangements of Heaters
,”
Physica A: Statistical Mech. Appl.
,
538
(
1
), p.
122479
.
38.
Alsabery
,
A. I.
,
Mohebbi
,
R.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2019
, “
Effect of Local Thermal Non-equilibrium Model on Natural Convection in a Nanofluid-Filled Wavy-Walled Porous Cavity Containing Inner Solid Cylinder
,”
Chem. Eng. Sci.
,
201
(
6
), pp.
247
263
.
39.
Tahmasebiboldaji
,
M.
,
Afrand
,
M.
,
Barzinjy
,
A. A.
,
Hamad
,
S. M.
, and
Talebizadehsardari
,
P.
,
2019
, “
Forced Convection Around Horizontal Tubes Bundles of a Heat Exchanger Using a Two-Phase Mixture Model: Effects of Nanofluid and Tubes Configuration
,”
Int. J. Mech. Sci.
,
161–162
(
10
), p.
105056
.
40.
Deepak Selvakumar
,
R.
, and
Dhinakaran
,
S.
,
2017
, “
Forced Convective Heat Transfer of Nanofluids Around a Circular Bluff Body With the Effects of Slip Velocity Using a Multi-phase Mixture Model
,”
Int. J. Heat Mass Transfer
,
106
(
3
), pp.
816
828
.
41.
Mirabdolah Lavasani
,
A.
, and
Bayat
,
H.
,
2016
, “
Numerical Study of Pressure Drop and Heat Transfer From Circular and Cam-Shaped Tube Bank in Cross-flow of Nanofluid
,”
Energy Conv. Management
,
129
(
12
), pp.
319
328
.
42.
Bakhti
,
F. Z.
, and
Si-Ameur
,
M.
,
2019
, “
A Comparison of Mixed Convective Heat Transfer Performance of Nanofluids Cooled Heat Sink With Circular Perforated pin fin
,”
Appl. Therm. Eng.
,
159
(
8
), p.
113819
.
43.
Marzban
,
A.
,
Sheikhzadeh
,
G.
, and
Toghraie
,
D.
,
2020
, “
Laminar Flow and Heat Transfer of Water/NDG Nanofluid on Tube Banks With Rhombic Cross Section With Different Longitudinal Arrangements
,”
J. Therm. Anal. Calorim.
,
140
(
1
), pp.
427
437
.
44.
Asif
,
M.
,
Chaturvedi
,
R.
, and
Dhiman
,
A.
,
2021
, “
Heat Transfer Enhancement From Inline and Staggered Arrays of Cylinders in a Heat Exchanger Using Alumina-Water Nanofluid
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041025
.
45.
Khashi’ie
,
N. S.
,
Hafidzuddin
,
E. H.
,
Arifin
,
N. M.
, and
Wahi
,
N.
,
2020
, “
Stagnation Point Flow of Hybrid Nanofluid Over a Permeable Vertical Stretching/Shrinking Cylinder With Thermal Stratification Effect
,”
CFD Lett.
,
12
(
2
), pp.
80
94
.
46.
Khashi’ie
,
N. S.
,
Arifin
,
N. M.
,
Hafidzuddin
,
E. H.
, and
Wahi
,
N.
,
2019
, “
Thermally Stratified Flow of Cu-Al2O3/Water Hybrid Nanofluid Past a Permeable Stretching/Shrinking Circular Cylinder
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
63
(
1
), pp.
154
163
.
47.
Khashi’ie
,
N. S.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2020
, “
Non-Darcy Mixed Convection of Hybrid Nanofluid With Thermal Dispersion Along a Vertical Plate Embedded in a Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
118
(
11
), p.
104866
.
48.
Khashi’ie
,
N. S.
,
Waini
,
I.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2021
, “
Unsteady Squeezing Flow of Cu-Al2O3/Water Hybrid Nanofluid in a Horizontal Channel With Magnetic Field
,”
Sci. Rep.
,
11
(
1
), p.
14128
.
49.
Wahid
,
N. S.
,
Arifin
,
N. M.
,
Khashi’ie
,
N. S.
, and
Pop
,
I.
,
2021
, “
Marangoni Hybrid Nanofluid Flow Over a Permeable Infinite Disk Embedded in a Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
126
(
6
), p.
105421
.
50.
Khashi’ie
,
N. S.
,
Arifin
,
N. M.
,
Sheremet
,
M.
, and
Pop
,
I.
,
2021
, “
Shape Factor Effect of Radiative Cu–Al2O3/H2O Hybrid Nanofluid Flow Towards an EMHD Plate
,”
Case Stud. Therm. Eng.
,
26
(
1
), p.
101199
.
51.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Conv. Manage.
,
52
(
1
), pp.
789
793
.
52.
Xia
,
G. D.
,
Liu
,
R.
,
Wang
,
J.
, and
Du
,
M.
,
2016
, “
The Characteristics of Convective Heat Transfer in Microchannel Heat Sinks Using Al2O3 and TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
76
(
8
), pp.
256
264
.
53.
Babu
,
J. A. R.
,
Kumar
,
K. K.
, and
Rao
,
S. S.
,
2017
, “
State-of-Art Review on Hybrid Nanofluids
,”
Renewable Sustainable Energy Rev.
,
77
(
9
), pp.
551
565
.
54.
Kashyap
,
D.
, and
Dass
,
A. K.
,
2019
, “
Effect of Boundary Conditions on Heat Transfer and Entropy Generation During Two-Phase Mixed Convection Hybrid Al2O3-Cu/Water Nanofluid Flow in a Cavity
,”
Int. J. Mech. Sci.
,
157–158
(
7
), pp.
45
59
.
55.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2020
, “
Magnetohydrodynamic Natural Convection Heat Transfer of Hybrid Nanofluid in a Square Enclosure in the Presence of a Wavy Circular Conductive Cylinder
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031009
.
56.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2020
, “
Entropy Generation Analysis Due to MHD Natural Convection Flow in a Cavity Occupied With Hybrid Nanofluid and Equipped With a Conducting Hollow Cylinder
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
2165
2179
.
57.
Alsabery
,
A. I.
,
Tayebi
,
T.
,
Kadhim
,
H. T.
,
Ghalambaz
,
M.
,
Hashim
,
I.
, and
Chamkha
,
A. J.
,
2021
, “
Impact of Two-Phase Hybrid Nanofluid Approach on Mixed Convection Inside Wavy Lid-Driven Cavity Having Localized Solid Block
,”
J. Adv. Res.
,
30
(
5
), pp.
63
74
.
58.
Wang
,
Y. Q.
,
Penner
,
L. A.
, and
Ormiston
,
S. J.
,
2000
, “
Analysis of Laminar Forced Convection of Air for Cross-flow in Banks
,”
Numer. Heat Transf., Part A Appl.
,
38
(
8
), pp.
819
845
.
59.
Nishimura
,
T.
,
Itoh
,
H.
,
Ohya
,
K.
, and
Miyashita
,
H.
,
1991
, “
Experimental Validation of Numerical Analysis of Flow Across Tube Banks for Laminar Flow
,”
J. Chem. Eng. Japan
,
24
(
5
), pp.
666
669
.
60.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2010
, “
Mixed Convective Heat Transfer From Two Identical Square Cylinders in Cross Flow at Re = 100
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2628
2642
.
61.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-sectional Area
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
2
), pp.
180
186
.
62.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transfer
,
59
(
4
), pp.
433
450
.
You do not currently have access to this content.