Abstract

In this article, an analytical expression for hourly yield, electrical energy and overall exergy of self-sustained solar still integrated with series and parallel combination of photovoltaic thermal-compound parabolic concentrator (PVT-CPC) collectors have been derived. The analysis is based on the basic energy balance equation of the proposed active solar distillation system. Based on numerical computations, it has been observed that the yield is maximum for all self-sustained PVT-CPC collectors are connected in series (case (i)). Furthermore, the daily yield and exergy increase with the increase of water depth unlike passive solar still for all collectors connected in series. However, overall exergy decreases with an increase of water depth for all collectors connected in parallel (case (iv)). For numerical simulations, the total numbers of self-sustained PVT-CPC collectors has been considered as constant. Furthermore, an effect of series and parallel combination of PVT-CPC collectors on daily yield, electrical energy, and overall exergy has also been carried out. Following additional conclusions have also been drawn: (i) The daily yield of the proposed active solar still decreases with the increase of packing factor of semi-transparent photovoltaic (PV) module for a given water depth and electrical energy and overall exergy increase with water depth for case (i) as expected due to low operating temperature range at higher water depth in the basin. (ii) The daily yield, electrical energy, and overall exergy increase with the increase of water depth for all combination of series and parallel arrangement of PVT-CPC collectors for a packing factor of 0.22 as per our expectation.

References

1.
Khalifa
,
A. E.
,
2021
, “
Membrane Distillation Desalination System With Gap Circulation and Cooling Using a Built-In Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012102
.
2.
Boubekri
,
M.
,
Chaker
,
A.
, and
Saadi
,
S.
,
2021
, “
Modeling and Simulation of a Vertical Multi-Effect Diffusion Solar Still Coupled With a Tracking Solar System and a PV/T-SWH System
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051003
.
3.
Khan
,
J. R.
,
Klausner
,
J. F.
,
Ziegler
,
D. P.
, and
Garimella
,
S. S.
,
2010
, “
Diffusion Driven Desalination for Simultaneous Fresh Water Production and Desulfurization
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
3
), p.
031006
.
4.
Malik
,
M. A. S.
,
Tiwari
,
G. N.
,
Kumar
,
A.
, and
Sodha
,
M. S.
,
1982
,
Solar Distillation
, 1st ed.,
Pergamon Press
,
Oxford, UK
.
5.
Kalogirou
,
S. A.
,
2005
, “
Seawater Desalination Using Renewable Energy Sources
,”
Prog. Energy Combust. Sci.
,
31
(
3
), pp.
242
281
.
6.
Østergaard
,
P. A.
,
Duic
,
N.
,
Noorollahi
,
Y.
,
Mikulcic
,
H.
, and
Kalogirou
,
S.
,
2020
, “
Sustainable Development Using Renewable Energy Technology
,”
Renewable Energy.
,
146
(
2
), pp.
2430
2437
.
7.
Kalogirou
,
S. A.
,
2014
,
Solar Energy Engineering: Processes and Systems
, 2nd ed.,
Academic Press
,
UK
.
8.
Tiwari
,
G. N.
, and
Sahota
,
L.
,
2017
,
Advanced Solar-Distillation Systems: Basics Principles, Thermal Modelling and Its Applications
,
Springer Publication
,
Singapore
.
9.
Taghvaei
,
H.
,
Taghvaei
,
H.
,
Jafarpur
,
K.
,
Karimi Estahbanati
,
M. R.
,
Feilizadeh
,
M.
,
Feilizadeh
,
M.
, and
Seddigh Ardekani
,
A.
,
2014
, “
A Thorough Investigation of the Effects of Water Depth on the Performance of Active Solar Stills
,”
Desalination
,
347
, pp.
77
85
.
10.
Raju
,
V. R.
, and
Narayana
,
R. L.
,
2018
, “
Effect of Flat Plate Collectors in Series on Performance of Active Solar Still for Indian Coastal Climatic Condition
,”
J. King Saud Univ. Eng. Sci.
,
30
(
1
), pp.
78
85
.
11.
Bait
,
O.
, and
Si-Ameur
,
M.
,
2018
, “
Enhanced Heat and Mass Transfer in Solar Stills Using Nanofluids: A Review
,”
Sol. Energy
,
170
, pp.
694
722
.
12.
Abu-Arabi
,
M.
,
Al-harahsheh
,
M.
,
Ahmad
,
M.
, and
Mousa
,
H.
,
2020
, “
Theoretical Modeling of a Glass-Cooled Solar Still Incorporating PCM and Coupled to Flat Plate Solar Collector
,”
J. Energy Storage
,
29
, p.
101372
.
13.
Yousef
,
M. S.
, and
Hassan
,
H.
,
2019
, “
Energetic and Exergetic Performance Assessment of the Inclusion of Phase Change Materials (PCM) in a Solar Distillation System
,”
Energy Convers. Manage.
,
179
, pp.
349
361
.
14.
Tiwari
,
G. N.
,
Mishra
,
A. K.
,
Meraj
,
M.
,
Ahmad
,
A.
, and
Khan
,
M. E.
,
2020
, “
Effect of Shape of Condensing Cover on Energy and Exergy Analysis of a PVT-CPC Active Solar Distillation System
,”
Sol. Energy
,
205
, pp.
113
125
.
15.
Kabeel
,
A. E.
, and
Abdelgaied
,
M.
,
2020
, “
Enhancement of Pyramid-Shaped Solar Stills Performance Using a High Thermal Conductivity Absorber Plate and Cooling the Class Cover
,”
Renewable Energy
,
146
, pp.
769
775
.
16.
Kumar
,
B. P.
,
Winston
,
D. P.
,
Pounraj
,
P.
,
Manokar
,
A. M.
,
Sathyamurthy
,
R.
, and
Kabeel
,
A. E.
,
2018
, “
Experimental Investigation on Hybrid PV/T Active Solar Still With Effective Heating and Cover Cooling Method
,”
Desalination
,
435
, pp.
140
151
.
17.
Naroei
,
M.
,
Sarhaddi
,
F.
, and
Sobhnamayan
,
F.
,
2018
, “
Efficiency of a Photovoltaic Thermal Stepped Solar Still: Experimental and Numerical Analysis
,”
Desalination
,
441
, pp.
87
95
.
18.
Mishra
,
K. N.
,
Meraj
,
M.
,
Tiwari
,
A. K.
, and
Tiwari
,
G. N.
,
2019
, “
Performance Evaluation of PVT-CPC Integrated Solar Still Under Natural Circulation
,”
Desalin. Water Treat.
,
156
, pp.
117
125
.
19.
Hedayati-Mehdiabadi
,
E.
,
Sarhaddi
,
F.
, and
Sobhnamayan
,
F.
,
2020
, “
Exergy Performance Evaluation of a Basin-Type Double-Slope Solar Equipped With Phase-Change Materials and PV/T Collector
,”
Renewable Energy
,
145
, pp.
2409
2425
.
20.
Hassan
,
H.
,
Yousef
,
M. S.
,
Fathy
,
M.
, and
Ahmed
,
M. S.
,
2020
, “
Assessment of Parabolic Trough Solar Collector Assisted Solar Still at Various Saline Water Mediums via Energy, Exergy, Exergyeconomic, and Enviroeconomic Approaches
,”
Renewable Energy
,
155
, pp.
604
616
.
21.
Arora
,
S.
,
Singh
,
H. P.
,
Sahota
,
L.
,
Arora
,
M. K.
,
Arya
,
R.
,
Singh
,
S.
,
Jain
,
A.
, and
Singh
,
A.
,
2020
, “
Performance and Cost Analysis of Photovoltaic Thermal (PVT)-Compound Parabolic Concentrator (CPC) Collector Integrated Solar Still Using CNT-Water Based Nanofluids
,”
Desalination
,
495
, p.
114595
.
22.
Katekar
,
P. V.
, and
Deshmukh
,
S. S.
,
2020
, “
A Review on Research Trends in Solar Still Design for Domestic and Industrial Applications
,”
J. Cleaner Prod.
,
257
, p.
120544
.
23.
Pansal
,
K.
,
Ramani
,
B.
,
Kumar Sadasivuni
,
K.
,
Panchal
,
H.
,
Manokar
,
M.
,
Sathyamurthy
,
R.
,
Kabeel
,
A. E.
,
Suresh
,
M.
, and
Israr
,
M.
,
2020
, “
Use of Solar Photovoltaic With Active Solar Still to Improve Distillate Output: A Review
,”
Groundw. Sustain. Dev.
,
10
, p.
100341
.
24.
Tiwari
,
G. N.
,
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2022
, “
Modified Hottel-Whillier-Bliss Equation for an Active Solar Distillation System for Higher Yield and Thermal Efficiency
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
2
), p.
021011
.
25.
Tiwari
,
G. N.
,
Meraj
,
M.
,
Khan
,
M. E.
,
Mishra
,
R. K.
, and
Garg
,
V.
,
2018
, “
Improved Hottel-Whillier-Bliss Equation for N-Photovoltaic Thermal-Compound Parabolic Concentrator (N-PVT-CPC) Collector
,”
Sol. Energy
,
166
, pp.
203
212
.
26.
Tiwari
,
G. N.
,
Tiwari
,
A.
, and
Shyam
,
2016
,
Handbook of Solar Energy: Theory, Analysis and Applications
,
Springer
,
Singapore
.
27.
Hepbasli
,
A.
,
2008
, “
A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future
,”
Renewable Sustainable Energy Rev.
,
12
(
3
), pp.
593
661
.
28.
Schott
,
T.
,
1985
, “
Operational Temperatures of PV Modules—A Theoretical and Experimental Approach
,”
Proceedings of 6th PV Solar Energy Conference
,
London, UK
, pp.
392
396
.
29.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
30.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.
You do not currently have access to this content.