Abstract

This article demonstrates, via a comprehensive study, the necessity of using a 3D computational fluid dynamics (CFD) approach for heat exchanger (HTX) modeling within underhood vehicle simulation. The results are presented as the difference between 1D and 3D CFD approaches with a focus on auxiliary fluid (e.g., coolant) temperature prediction as a function of primary fluid (e.g., air) inlet conditions. It has been shown that the 1D approach could significantly underpredict auxiliary fluid inlet temperature due to neglecting the spatial distribution of primary fluid velocity magnitude. The resultant difference in the auxiliary fluid flow HTX inlet temperature is presented and discussed as a function of the uniformity index (UI) of the primary fluid flow velocity magnitude. In addition, the 3D HTX model’s importance is demonstrated in an industrial example of full 3D underhood simulation.

References

1.
Kim
,
H. J.
, and
Kim
,
C.-J.
,
2008
, “
A Numerical Analysis for the Cooling Module Related to Automobile Air-Conditioning System
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1896
1905
.
2.
Mao
,
S.
,
Feng
,
Z.
, and
Michaelides
,
E. E.
,
2010
, “
Off-Highway Heavy-Duty Truck Under-Hood Thermal Analysis
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1726
1733
.
3.
Ou
,
J. J.
,
Li
,
L.-F.
,
Cui
,
T.
, and
Chen
,
Z.-M.
,
2014
, “
Application of Field Synergy Principle to Analysis of Flow Field in Underhood of LPG Bus
,”
Comput. Fluids
,
103
, pp.
186
192
.
4.
Binner
,
T.
,
Reister
,
H.
,
Weidmann
,
E. P.
, and
Wiedemann
,
J.
,
2006
, “
Aspects of Underhood Thermal Analyses
,”
Progress in Vehicle Aerodynamics IV: Numerical Methods
,
Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS)
,
March
.
5.
Pang
,
S. C.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Badruddin
,
I. A.
,
Ramli
,
R.
, and
Hazrat
,
M. A.
,
2012
, “
Underhood Geometry Modification and Transient Coolant Temperature Modelling for Robust Cooling Networks
,”
Int. J. Mech. Mater. Eng.
,
7
(
3
), pp.
251
258
.
6.
Ding
,
W.
,
Williams
,
J.
,
Karanth
,
D.
, and
Sovani
,
S.
,
2006
, “
CFD Application in Automotive Front-End Design
,”
SAE Trans.
,
115
(
6
), pp.
244
252
.
7.
Seider
,
G.
, and
Bet
,
F.
,
2013
, “
Flow and Thermal Performance Prediction for Automotive Accessory Units and Their Integration Into Underhood CFD Flow Analysis With Multi Thermal Systems
,”
Vehicle Thermal Management Systems Conference Proceedings (VTMS11)
,
Coventry Technocentre, UK
,
May 15–16
,
Elsevier
,
p.
209
.
8.
Saab
,
S.
,
Hetet
,
J.-F.
,
Maiboom
,
A.
, and
Charbonnelle
,
F.
,
2013
, “
Impact of the Underhood Opening Area on the Drag Coefficient and the Thermal Performance of a Vehicle
,”
SAE Technical Papers
,
Detroit, MI
,
April
.
9.
Makam
,
S.
,
Dubbs
,
C.
,
Roosien
,
Y.
,
Lin
,
F.
, and
Resh
,
W.
,
2015
, “
Analytical Study of Thermal Management: A Case Study of Underhood Configurations
,”
SAE Technical Paper
,
Detroit, MI
,
April
.
10.
Vehovszky
,
B.
,
Jakubík
,
T.
, and
Treszkai
,
M.
,
2019
, “
Thermal Examination of a Simplified Exhaust Tube-Heatshield Model
,”
Period. Polytech. Chem. Eng.
,
47
(
3
), pp.
190
195
.
11.
Shui-Chang
,
L.
,
Li-Fu
,
L.
, and
Yong
,
Z.
,
2014
, “
Vehicle Radiators’ Performance Calculation and Improvement Based on the Coupling Multi-Scale Models Simulations
,”
Open Mech. Eng. J.
,
8
(
1
), pp.
636
642
.
12.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Manual, U. D. F.
,
2009
,
ANSYS FLUENT 12.0. Theory Guide
.
14.
Khot
,
A. R.
,
Thombare
,
D. G.
,
Gaikwad
,
S. P.
, and
Adadande
,
A. S.
,
2013
, “
An Overview of Radiator Performance Evaulation and Testing
,”
IOSR J. Mech. Civil Eng. (IOSR-JMCE)
,
2
(
6
), pp.
7
14
.
15.
Navarro
,
H. A.
, and
Cabezas-Gomez
,
L. C.
,
2007
, “
Effectiveness-NTU Computation With a Mathematical Model for Cross-Flow Heat Exchanger
,”
Braz. J. Chem. Eng.
,
24
(
4
), pp.
509
521
.
16.
Siemens STAR-CCM+
,
2018
,
Theory Guide release 13.04.010
.
17.
SAE J902
,
2011
,
Passenger Car Windshield Demisting and Defrosting Systems
.
18.
Tischer
,
S.
,
Correa
,
C.
, and
Deutschmann
,
O.
,
2001
, “
Transient Three-Dimensional Simulations of a Catalytic Combustion Monolith Using Detailed Models for Heterogeneous and Homogenous Reactions and Transport Phenomena
,”
Catal. Today
,
69
(
1–4
), pp.
57
62
.
19.
Crippa
,
L.
,
Mattei
,
M.
,
Polidoro
,
F.
,
Kleinclaus
,
C.
,
Rousseau
,
Y.
,
Xu
,
B.
, and
Alajbegovic
,
A.
,
2011
, “
Design and Analysis of Computer Experiments (DACE) and 3D Computation Fluid Dynamics (CFD) Simulations for Agricultural Tractor Cooling Concept
,”
Vehicle Thermal Management Systems Conference and Exhibition (VTMS10)
,
Gaydon, Warwickshire, UK
,
May 15–19
, pp.
459
471
.
You do not currently have access to this content.