Abstract

This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The freestream turbulence intensity is measured to be 13.5% upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a two-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure-sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
2.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
5
), pp.
521
530
.
3.
Kwak
,
J. S.
, and
Han
,
J.
,
2003
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
494
502
.
4.
Kwak
,
J. S.
, and
Han
,
J.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
5.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
6.
Narzary
,
D.
,
Liu
,
K.
,
Han
,
J. C.
,
Mhetras
,
S.
, and
Landis
,
K.
,
2014
, “
Turbine Blade Tip Film-Cooling and Heat Transfer Measurements at High Blowing Ratios
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20, Vol. 45721, p. V05BT13A025
.
7.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
J. A.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure SideHoles—Part I: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
127
(
2
), pp.
270
277
.
8.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part II: Heat Transfer Measurements
,”
ASME J. Turbomach.
,
127
(
2
), pp.
278
286
.
9.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
(
1
), pp.
12
21
.
10.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
11.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Film Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
.
12.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Cooling With Blade Rotation—Part II: Shroud Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091003
.
13.
Azad
,
G. S.
,
Han
,
J.
,
Teng
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
14.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
15.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhury
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
(
3
), pp.
301
309
.
16.
Key
,
N. L.
, and
Arts
,
T.
,
2004
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
17.
Naik
,
S.
,
Georgakis
,
C.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2011
, “
Heat Transfer and Film Cooling of Blade Tips and Endwalls
,”
ASME J.Turbomach.
,
134
(
4
), p.
041004
.
18.
Pátý
,
M.
,
Cernat
,
B. C.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2018
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part II: Tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
19.
Arisi
,
A.
,
Xue
,
S.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2015
, “
Numerical Investigation of Aerothermal Characteristics of the Blade Tip and Near-Tip Regions of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
137
(
9
), p.
091002
.
20.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
21.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.
,
2011
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
22.
Jeong
,
J. Y.
,
Kim
,
W.
,
Kwak
,
J. S.
, and
Park
,
J. S.
,
2019
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Partial Cavity Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071007
.
23.
Narzary
,
D.
,
2010
, “
Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer
,”
Ph.D. dissertation, Texas A&M University
,
College Station, TX
.
24.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
2
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.