Abstract

With the increasing demand of clean and energy-efficient air conditioning systems, evaporative air cooling technique is gaining significant attention owing to less energy consumption and environmentally safe technology in comparison with conventional refrigerant-based air conditioners. In this study, commercial desiccant dehumidifier is coupled with experimentally developed direct evaporative cooling (DEC) system to first dehumidify the air and then pass it through DEC to achieve human thermal comfort level defined by ASHRAE standards. Under the climatic conditions of Islamabad, Pakistan, multiple experiments were carried out at different temperatures, flowrate, and relative humidity of air during November, when air temperature and relative humidity were in the range of 25–30 °C and 40–60%, respectively. To analyze the system performance under summer ambient conditions, indoor temperature was increased by 8–10 °C and relative humidity by 15–25% in laboratory. Experimental analysis showed that the system can provide human comfort level for a range of temperature 29–39.7 °C and relative humidity of 65–80% at flowrate of 180 m3/h. To achieve thermal comfort at higher humidity level, DEC is coupled with commercial desiccant dehumidifier. However, due to desiccant regeneration by an electric heater in the dehumidifier, the overall power consumption of the whole system increases up to 1.95 kW. Two well-known indices coefficient of performance (CoP) and energy efficiency ratio (EER) are used to analyze the system performance. Experimental analysis revealed that CoP decreases with the increasing specific humidity of air, decreasing ambient temperature, and flowrate.

References

1.
Sultan
,
M.
, and
Miyazaki
,
T.
,
2017
, “Energy-Efficient Air-Conditioning Systems for Nonhuman Applications,”
Refrigeration
,
O.
Ekren
, ed.,
IntechOpen
,
London, UK
, pp.
97
117
.
2.
Xuan
,
Y. M.
,
Xiao
,
F.
,
Niu
,
X. F.
,
Huang
,
X.
, and
Wang
,
S. W.
,
2012
, “
Research and Application of Evaporative Cooling in China: A Review (I)—Research
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3535
3546
.
3.
Ahmed
,
C. S. K.
,
Gandhidasan
,
P.
, and
Al-Farayedhi
,
A. A.
,
1997
, “
Simulation of a Hybrid Liquid Desiccant Based Air-Conditioning System
,”
Appl. Therm. Eng.
,
17
(
2
), pp.
125
134
.
4.
Rafique
,
M. M.
,
Gandhidasan
,
P.
,
Rehman
,
S.
, and
Alhems
,
L. M.
,
2016
, “
Performance Analysis of a Desiccant Evaporative Cooling System Under hot and Humid Conditions
,”
Environ. Prog. Sustainable Energy
,
35
(
5
), pp.
1476
1484
.
5.
Aleem
,
M.
,
Hussain
,
G.
,
Sultan
,
M.
,
Miyazaki
,
T.
,
Mahmood
,
M. H.
,
Sabir
,
M. I.
,
Nasir
,
A.
,
Shabir
,
F.
, and
Khan
,
Z. M.
,
2020
, “
Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)
,”
Energies
,
13
(
21
), p.
5530
.
6.
Kashif
,
M.
,
Sultan
,
M.
, and
Khan
,
Z. M.
,
2017
, “
Alternative Air-Conditioning Options for Developing Countries
,”
Eur. J. Eng. Technol. Res.
,
2
(
1
), pp.
76
79
.
7.
Maheshwari
,
G.
,
Al-Ragom
,
F.
, and
Suri
,
R.
,
2001
, “
Energy-Saving Potential of an Indirect Evaporative Cooler
,”
Appl. Energy
,
69
(
1
), pp.
69
76
.
8.
Matsui
,
K.
,
Thu
,
K.
, and
Miyazaki
,
T.
,
2020
, “
A Hybrid Power Cycle Using an Inverted Brayton Cycle With an Indirect Evaporative Device for Waste-Heat Recovery
,”
Appl. Therm. Eng.
,
170
, p.
115029
.
9.
Duan
,
Z.
,
Zhan
,
C.
,
Zhang
,
X.
,
Mustafa
,
M.
,
Zhao
,
X.
,
Alimohammadisagvand
,
B.
, and
Hasan
,
A.
,
2012
, “
Indirect Evaporative Cooling: Past, Present and Future Potentials
,”
Renewable Sustainable Energy Rev.
,
16
(
9
), pp.
6823
6850
.
10.
Sultan
,
M.
,
Niaz
,
H.
, and
Miyazaki
,
T.
,
2020
, “Investigation of Desiccant and Evaporative Cooling Systems for Animal Air-Conditioning,”
Low-Temperature Technologies
,
T.
Morosuk
, and
M.
Sultan
, eds.,
IntechOpen
,
London, UK
, pp.
21
37
, https://www.intechopen.com/chapters/68896
11.
Sultan
,
M.
,
El-Sharkawl
,
I. I.
,
Miyazaki
,
T.
,
Saha
,
B. B.
, and
Koyama
,
S.
,
2014
, “
Experimental Study on Carbon Based Adsorbents for Greenhouse Dehumidification
,”
Evergreen
,
1
(
2
), pp.
5
11
.
12.
Pandelidis
,
D.
, and
Anisimov
,
S.
,
2015
, “
Numerical Analysis of the Heat and Mass Transfer Processes in Selected M-Cycle Heat Exchangers for the Dew Point Evaporative Cooling
,”
Energy Convers. Manage.
,
90
, pp.
62
83
.
13.
Enteria
,
N.
, and
Mizutani
,
K.
,
2011
, “
The Role of the Thermally Activated Desiccant Cooling Technologies in the Issue of Energy and Environment
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
2095
2122
.
14.
Khalatov
,
A.
,
Karp
,
I.
, and
Isakov
,
B.
,
2011
, “
Prospects of the Maisotsenko Thermodynamic Cycle Application in Ukraine
,”
Int. J. Energy Clean Environ.
,
12
(
2–4
), pp.
141
157
.
15.
Anisimov
,
S.
,
Pandelidis
,
D.
, and
Danielewicz
,
J.
,
2014
, “
Numerical Analysis of Selected Evaporative Exchangers With the Maisotsenko Cycle
,”
Energy Convers. Manage.
,
88
, pp.
426
441
.
16.
Fekadu
,
G.
, and
Subudhi
,
S.
,
2018
, “
Renewable Energy for Liquid Desiccants Air Conditioning System: A Review
,”
Renewable Sustainable Energy Rev.
,
93
, pp.
364
379
.
17.
Ronghui
,
Q.
,
Chuanshuai
,
D.
, and
Zhang
,
L.-Z.
,
2020
, “
A Review of Liquid Desiccant Air Dehumidification: From System to Material Manipulations
,”
Energy Build.
,
215
, p.
109897
.
18.
Sultan
,
M.
,
El-Sharkawy
,
I. I.
,
Miyazaki
,
T.
,
Saha
,
B. B.
, and
Koyama
,
S.
,
2015
, “
An Overview of Solid Desiccant Dehumidification and Air Conditioning Systems
,”
Renewable Sustainable Energy Rev.
,
46
, pp.
16
29
.
19.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2013
, “
Review of Solar Refrigeration and Cooling Systems
,”
Energy Build.
,
67
, pp.
286
297
.
20.
Dowdy
,
J. A.
, and
Karabash
,
N. S.
,
1987
, “
Experimental Determination of Heat and Mass Transfer Co-Efficient in Rigid Impregnated Cellulose Evaporative Media
,”
Proceedings of the ASHRAE Transactions
,
Nashville, TN
, Vol. 93, Part 2, pp.
382
395
.
21.
Ge
,
T. S.
, and
Xu
,
J. C.
,
2016
, “
Review of Solar-Powered Desiccant Cooling Systems
,”
Adv. Solar Heat.
,
2016
, pp.
329
379
.
22.
Kim
,
J. H.
, and
Ahn
,
J.
,
2021
, “
Performance Analysis of Hybrid Desiccant Cooling System With Enhanced Dehumidification Capability Using TRNSYS
,”
Appl. Sci.
,
11
(
7
), p.
3236
.
23.
Islamabad (Pakistan) Temperature Variation
,” https://en.climate-data.org/asia/pakistan/islamabad-capital-territory/islamabad-32/#temperature-graph, Accessed January 10, 2021.
24.
Hussain
,
S.
,
Xianfang
,
S.
,
Hussain
,
I.
,
Jianrong
,
L.
,
Mei
,
H. D.
,
Hu
,
Y. L.
, and
Huang
,
W.
,
2015
, “
Controlling Factors of the Stable Isotope Composition in the Precipitation of Islamabad, Pakistan
,”
Adv. Meteorol.
,
2015
, pp.
1
11
.
25.
Gilani
,
N.
, and
Haghighi Poshtiri
,
A.
,
2014
, “
Heat Exchanger Design of Direct Evaporative Cooler Based on Outdoor and Indoor Environmental Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041016
.
26.
Relative Humidity Calculation
,” http://www.1728.org/relhum.htm, Accessed January 15, 2021.
27.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2014
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill Professional
,
New York
.
28.
Standard AC Technical Specification
,” https://www.haier.com/pk/air-conditioners/, Accessed June 23, 2021.
29.
Comino
,
F.
,
Gonzalez
,
J. C.
,
Navas-Martos
,
F. J.
, and
Adana
,
M. R. D.
,
2020
, “
Experimental Energy Performance Assessment of a Solar Desiccant Cooling System in Southern Europe Climates
,”
Appl. Therm. Eng.
,
165
, p.
114579
.
You do not currently have access to this content.