Abstract

Internal losses in motor windings and cores result in unwanted heat. According to International Energy Agency, majority of motors in service today are AC induction motors between 0.75 and 375 kW. For these motors, internal losses (heat) are conducted to the surrounding environment by internal conduction to the casing and then to the surrounding environment by convection. For small motors of up to 5 kW, the cores are mounted in a simple round housing and as they get larger the housings are ribbed and external fans are installed. Motors are designed assuming an environmental maximum temperature of 40 °C and with a hot spot allowance of 10 °C can withstand up to 155 °C (class F) at the winding position. However, due to changes in environmental temperatures, system voltage variations and harmonics, winding temperatures often exceed this limit. Consequently, this range of motors last only approximately 3 years. This paper investigates the possible application of thermoelectric cooler (TEC) to increase the heat flow from the core to reduce the temperature at the winding position, potentially providing longer insulation and motor life. For small motors, they can be simply attached to the outer surface. For larger motors with frames incorporating cooling ribs, they could be installed between the cores and the frames. The experimental results found that the application of TEC reduces the winding temperatures by 25.4%. Ability to incorporate this technology allows the opportunity to add a controlled device that can reduce temperatures at the windings when the temperatures exceed normal ratings.

References

1.
International Energy Agency
,
2017
, “
Electricity Information Overview
,” No. 03014215, Paris.
2.
Bari
,
S.
,
2017
, “
An Experimental Study of a Waste Heat Recovery System Connected to a Diesel-Gen-Set
,” SAE Technical Paper 2017-01-0123, pp.
1
6
.
3.
IHS, “12 Billion Electric Motors to be Shipped in Consumer Products by 2018,” https://www.controleng.com/articles/12-billion-electric-motors-to-be-shipped-in-consumer-products-by-2018/, Accessed November 4, 2020.
4.
Forum
,
E.
,
2004
, “
Explanation of Motor Cooling Technology
,” http://www.itsev.com/techev/e/index.html, Accessed March 4, 2021.
5.
EASA
,
2002
,
EASA Technical Manual
,
Electrical Apparatues Service Association
,
St. Louis, MO
.
6.
Boglietti
,
A.
,
Carpaneto
,
E.
,
Cossale
,
M.
,
Borlera
,
A. L.
,
Staton
,
D.
, and
Popescu
,
M.
,
2014
, “
Electrical Machine First Order Short-Time Thermal Transients Model Measurements and Parameters Evaluation
,” IEEE Paper 978-1-4799-4032-5, pp.
1
7
.
7.
Fang
,
G.
,
Yuan
,
W.
,
Yan
,
Z.
,
Sun
,
Y.
, and
Tang
,
Y.
,
2019
, “
Thermal Management Integrated With Three-Dimensional Heat Pipes for Air-Cooled Permanent Magnet Synchronous Motor
,”
Appl. Therm. Eng.
,
152
, pp.
594
604
.
8.
Rönnberg
,
K. K.
, and
Beniakar
,
M. E.
,
2016
, “
Thermal Modelling of Totally Enclosed Fan-Cooled Motors Via Conjugate Heat Transfer Analysis and Air-Flow Measurement
,” IEEE Paper 978-1-5090-1032-5, p.
1
.
9.
Hruska
,
K.
,
Kindl
,
V.
, and
Pechanek
,
R.
,
2013
,
Influence of Temperature-Dependent Materials on Mathematical Modelling of Thermal Problems of Induction Machines
,
Faculty of Electrical Engineering, University of West Bohemia
,
Pilsen
.
10.
Dutta
,
B.
, and
Chowdhury
,
S. K.
,
2012
, “
Steady State Thermal Model of TEFC Induction Machine
,”
Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems
,
Bengaluru, India
,
Dec. 16–19
, pp.
1
6
.
11.
Rönnberg
,
K.
, and
Beniakar
,
M. E.
,
2018
, “
Thermal Modelling of Totally Enclosed Fan Cooled Motors
,” IEEE Paper 978-5386-2477-7.
12.
Staton
,
D.
,
Hawkins
,
D.
, and
Popescu
,
M.
,
2012
, “
Practical Strategies for Improved Cooling Motors and Generators
,” https://pdfs.semanticscholar.org/88af/e21650aac06c0a9a4846bbb66e99c4f1fe66.pdf, Accessed March 4, 2021.
13.
Staton
,
D.
,
Boglietti
,
A.
, and
Cavagnino
,
A.
,
2005
, “
Solving the More Difficult Aspects of Electric Motor Thermal Analysis in Small and Medium Size Industrial Induction Motors
,”
IEEE Trans. Energy Convers.
,
20
(
3
), pp.
620
628
.
14.
Braslavskiy
,
I. Y.
,
Metelkov
,
V. P.
,
Kostylev
,
A. V.
, and
Esaulkova
,
D. V.
,
2016
,
Ural Federal University (UrFU)
.
15.
Mynarek
,
P.
, and
Kowol
,
M.
,
2011
, “
Thermal Analysis of Three-Phase Induction Motor Using Circuit Models
,”
IEEE Electrodynamics
,
11
, pp.
119
122
.
16.
Mezani
,
S.
,
Takorabet
,
N.
, and
Laporte
,
B.
, “
A Combined Electromagnetic and Thermal Analysis of Induction Motors
,”
IEEE Trans. Magn.
,
41
(
5
), pp.
1572
1575
.
17.
Boglietti
,
A.
,
Carpaneto
,
E.
,
Cossaleo
,
M.
,
Popescu
,
M.
,
Staton
,
D.
, and
Vaschetto
,
S.
,
2015
, “
Equivalent Thermal Conductivity Determination of Winding Insulation System by Fast Experimental Approach
,”
2015 IEEE International Electric Machines & Drives Conference (IEMDC)
,
Coeur d'Alene, ID
,
July
, pp.
1
6
.
18.
Staton
,
D.
,
Popescu
,
M.
,
Cossar
,
C.
,
McGilp
,
M.
,
Omori
,
S.
, and
Kurimoto
,
T.
,
2008
, “
Analytical Thermal Models for Small Induction Motors
,”
2008 18th International Conference on Electrical Machines
,
Vilamoura, Portugal
,
August
, pp.
1
6
.
19.
Boglietti
,
A.
, and
Vallan
,
A.
,
2006
, “
Measurement of Housing Thermal Resistances in Industrial Motors
,”
2006 IEEE Instrumentation and Measurement Technology Conference Proceedings
,
Sorrento, Italy
,
Apr. 24–27
, pp.
1
5
.
20.
Kim
,
C.
, and
Lee
,
K. S.
,
2017
, “
Thermal Nexus Model for the Thermal Characteristic Analysis of an Open-Type Air-Cooled Induction Motor
,”
Appl. Therm. Eng.
,
112
, pp.
1108
1116
.
21.
Chiu
,
H. C.
,
Jang
,
J. H.
,
Yan
,
W. M.
, and
Shiao
,
R. B.
,
2017
, “
Thermal Performance Analysis of a 30 kW Switched Reluctance Motor
,”
Int. J. Heat Mass Transfer
,
114
, pp.
145
154
.
22.
Jang
,
J. H.
,
Chiu
,
H. C.
,
Yan
,
W. M.
,
Tsai
,
M. C.
, and
Wang
,
P. Y.
,
2015
, “
Numerical Study on Electromagnetics and Thermal Cooling of a Switched Reluctance Motor
,”
Case Stud. Therm. Eng.
,
6
, pp.
16
27
.
23.
Melka
,
B.
,
Smolka
,
J.
,
Hetmanczyk
,
J.
, and
Lasek
,
P.
,
2019
, “
Numerical and Experimental Analysis of Heat Dissipation Intensification From Electric Motor
,”
Energy
,
182
, pp.
269
279
.
24.
Cavazzuti
,
M.
,
Gaspari
,
G.
,
Pasquale
,
S.
, and
Stalio
,
E.
,
2019
, “
Thermal Management of a Formula E Electric Motor: Analysis and Optimization
,”
Appl. Therm. Eng.
,
157
, pp.
1
10
.
25.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2015
, “
Experimental Study of Oil Cooling Systems for Electric Motors
,”
Appl. Therm. Eng.
,
75
, pp.
1
13
.
26.
Li
,
H.
,
2010
, “
Cooling of a Permanent Magnet Electric Motor With a Centrifugal Impeller
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
797
810
.
27.
Kumar
,
A.
,
Marwaha
,
S.
,
Marwaha
,
A.
, and
Kalsi
,
N. S.
,
2010
, “
Magnetic Field Analysis of Induction Motor for Optimal Cooling Duct Design
,”
Simul. Model. Pract. Theory
,
18
(
2
), pp.
157
164
.
28.
NEMA
,
2009
,
NEMA Standards Publication MG 1-2009 Motors and Generators
,
National Electrical Manufacturers Association
,
Washington, DC
.
29.
Ameer
,
I.
,
Iu
,
H.
,
Hodkiewicz
,
M.
, and
Down
,
G.
,
2009
, “
A Study Into the True Life Cycle Costs of Electric Motors
,”
CEED Seminar Proceedings 2009
,
Perth, Australia
,
Feb. 10
, pp.
1
6
.
30.
Hossain
,
S. N.
, and
Bari
,
S.
,
2013
, “
Additional Power Generation from the Exhaust Gas of Diesel Engine by Bottoming Rankine Cycle
,”
Proceedings of the SAE Technical Paper 2013-01-1639
,
SAE 2013 World Congress & Exhibition
,
Aug. 4
.
31.
Bari
,
S.
, and
Loh
,
W. Z.
, “
Parametric Optimization of a Rankine Cycle Based Waste Heat Recovery System for a 1.1 MW Diesel-Gen-Set
,” SAE Technical Paper 2020-01-0890, pp.
1
9
.
32.
Nordelöf
,
A.
,
Grunditz
,
E.
,
Lundmark
,
S.
,
Tillman
,
A. M.
,
Alatalo
,
M.
, and
Thiringer
,
T.
,
2019
, “
Life Cycle Assessment of Permanent Magnet Electric Traction Motors
,”
Transp. Res. D: Transp. Environ.
,
67
, pp.
263
274
.
33.
Kim
,
C.
,
Lee
,
K. S.
, and
Yook
,
S. J.
,
2016
, “
Effect of Air-Gap Fans on Cooling of Windings in a Large-Capacity, High-Speed Induction Motor
,”
Appl. Therm. Eng.
,
100
, pp.
658
667
.
34.
Galloni
,
E.
,
Parisi
,
P.
,
Marignetti
,
F.
, and
Volpe
,
G.
,
2018
, “
CFD Analyses of a Radial Fan for Electric Motor Cooling
,”
Ther. Sci. Eng. Prog.
,
8
, pp.
470
476
.
35.
Putra
,
N.
, and
Ariantara
,
B.
,
2017
, “
Electric Motor Thermal Management System Using L-Shaped Flat Heat Pipes
,”
Appl. Therm. Eng.
,
126
, pp.
1156
1163
.
36.
Popescu
,
M.
,
Staton
,
D.
,
Boglietti
,
A.
,
Cavagnino
,
A.
,
Hawkins
,
D.
, and
Goss
,
J.
,
2015
, “
Modern Heat Extraction Systems for Electrical Machines—A Review
,”
Proceedings of the 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)
,
Turin, Italy
,
Aug. 13
, IEEE, pp.
289
296
.
37.
Moreels
,
D.
,
2018
, “
Axial-Flux Motors and Generators Shrink Size, Weight
,” https://www.powerelectronics.com/markets/automotive/article/21864194/axialflux-motors-and-generators-shrink-size-weight, Accessed January 5, 2021.
38.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes: Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.
39.
Adera
,
S.
,
Antao
,
D.
,
Raj
,
R.
, and
Wang
,
E. N.
,
2016
, “
Design of Micropillar Wicks for Thin-Film Evaporation
,”
Int. J. Heat Mass Transfer
,
101
, pp.
280
294
.
40.
Carr
,
P.
, and
Lindberg
,
J. J.
,
2001
, “
Personal Thermal Comfort System Using Thermal Storage
,” US Patent No. US6481213B2, Instatherm Co.
41.
Hebei
,
I. T.
,
2015
, “
TEC1-12706 Thermoelectric Cooler
,”
Shanghai Co., Ltd
,
1
(
2.03
), pp.
1
3
. https://peltiermodules.com/peltier.datasheet/TEC1-12706.pdf
42.
Thermonamic
,
2015
, “
Specification of Thermoelectric Module TEC1-12706
,”
Thermonamic Data Sheet
, pp.
1
3
. http://espressomilkcooler.com/wp-content/uploads/2015/03/TEC1-12706-site-ready.pdf
43.
Xu
,
Y.
,
Jia
,
Y.
,
Ai
,
M.
, and
Wang
,
Y.
,
2018
, “
Heat Transfer Characteristics of External Ventilated Path in Compact High-Voltage Motor
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1136
1146
.
44.
Swanson
,
B.
,
Somers
,
E.
, and
Heikes
,
R.
,
1961
, “
Optimization of a Sandwiched Thermoelectric Device
,”
ASME J. Heat Transfer
,
83
(
1
), pp.
77
82
.
45.
Panas
,
J. F.
,
1971
, “
Thermoelectric Cooling Device
,” U. A. Force, ed., Google Patents No. US3599437A.
46.
Venkatasubramanian
,
R.
,
2001
, “
Thin-Film Thermoelectric Device and Fabrication Method of Same
,” L. T. S. Inc., and N. T. S. Inc., eds., Google Patents No. US6300150B1.
47.
Abramson
,
A. R.
,
Woo Chul
,
K.
,
Huxtable
,
S. T.
,
Haoquan
,
Y.
,
Yiying
,
W.
,
Majumdar
,
A.
,
Chang-Lin
,
T.
, and
Peidong
,
Y.
,
2004
, “
Fabrication and Characterization of a Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device
,”
J. Microelectromech. Syst.
,
13
(
3
), pp.
505
513
.
48.
McKinnell
,
J. C.
,
Liebeskind
,
J.
, and
Chen
,
C.-H.
,
2007
, “
Micro-Fabricated Device With Thermoelectric Device and Method of Making
,” S. E. C. Ltd, ed., Google Patents No. US7205675B2.
49.
Yilbas
,
B.
, and
Sahin
,
A.
,
2010
, “
Thermoelectric Device and Optimum External Load Parameter and Slenderness Ratio
,”
Energy
,
35
(
12
), pp.
5380
5384
.
50.
Bell
,
L. E.
,
2011
, “
Thermoelectrics Utilizing Convective Heat Flow
,” G. Inc., ed., Google Patents No. US7926293B2.
51.
Petrovski
,
D.
,
2015
, “
Thermoelectric Device
,” G. Inc., ed., Google Patents No. US9105808B2.
52.
Kim
,
C.
, and
Lee
,
K. S.
,
2017
, “
Numerical Investigation of the Air-Gap Flow Heating Phenomena in Large-Capacity Induction Motors
,”
Int. J. Heat Mass Transfer
,
110
, pp.
746
752
.
53.
Nikbakhsh
,
A.
,
Izadfar
,
H. R.
, and
Jazaeri
,
M.
,
2019
, “
Classification and Comparison of Rotor Temperature Estimation Methods of Squirrel Cage Induction Motors
,”
Measurement
,
145
, pp.
779
802
.
54.
Lee
,
K. H.
,
Cha
,
H. R.
, and
Kim
,
Y. B.
,
2016
, “
Development of an Interior Permanent Magnet Motor Through Rotor Cooling for Electric Vehicles
,”
Appl. Therm. Eng.
,
95
, pp.
348
356
.
55.
Wang
,
Y.
,
Li
,
S.
,
Xie
,
X.
,
Deng
,
Y.
,
Liu
,
X.
, and
Su
,
C.
,
2018
, “
Performance Evaluation of an Automotive Thermoelectric Generator With Inserted Fins or Dimpled-Surface Hot Heat Exchanger
,”
Appl. Energy
,
218
, pp.
391
401
.
56.
Pieterse
,
M. J.
,
2009
, “
Development of a Thermal Model for an Inner Stator Type Reluctance Motor
,”
Ph.D. dissertation
,
University of Waterloo
,
Ontario, Canada
.
You do not currently have access to this content.