Abstract

The power of one rack in a data center can be greater than 3 kW, which is released within a relatively small area. However, most of the heat in a data center is released from the electronic chips. Thus, the energy consumption of the air-conditioning system in a data center will be significantly decreased if the heat released by the electronic chips can be reduced directly. Although liquid cooling heat sinks (LCHS) have been demonstrated as an effective way to resolve this problem, the application of LCHS is limited by the uneven cooling distribution on the surface of the electronic chips and the liquid leakage of the LCHS. The constructal law optimizes the design of the pipeline by introducing the freedom of deformation in the fluid geometry to obtain the optimal global performance. In this study, a novel Y-shaped liquid cooling heat sink (YLCHS) was proposed based on the constructal law, in which the cooling water enters the center of the heat sink through the inlet pipe and diffuses into the periphery through the internal Y-shaped microchannels. A numerical simulation was carried out to determine the cooling effect of the YLCHS. Compared to those of the conventional S-shaped liquid cooling heat sink (CSLCHS), the peak surface temperature and the average surface temperature of the electronic chip with YLCHS were decreased by 15.2 °C and 6.3 °C, respectively. Furthermore, the pressure loss of the electronic chip with YLCHS was also reduced by 63.0%.

References

1.
Cho
,
J.
,
Lim
,
T.
, and
Kim
,
B. S.
,
2009
, “
Measurements and Predictions of the Air Distribution Systems in High Compute Density (Internet) Data Centers
,”
Energy Build.
,
41
(
10
), pp.
1107
1115
. 10.1016/j.enbuild.2009.05.017
2.
Patankar
,
S. V.
,
2010
, “
Airflow and Cooling in a Data Center
,”
ASME J. Heat Mass Transfer
,
132
(
7
), p.
073001
. 10.1115/1.4000703
3.
Cho
,
J.
,
Yang
,
J.
, and
Park
,
W.
,
2014
, “
Evaluation of air Distribution System's Airflow Performance for Cooling Energy Savings in High-Density Data Centers
,”
Energy Build.
,
68
, pp.
270
279
. 10.1016/j.enbuild.2013.09.013
4.
Tan
,
H.
,
Wu
,
L.
,
Wang
,
M.
,
Yang
,
Z.
, and
Du
,
P.
,
2019
, “
Heat Transfer Improvement in Microchannel Heat Sink by Topology Design and Optimization for High Heat Flux Chip Cooling
,”
Int. J. Heat Mass Transfer
,
129
, pp.
681
689
. 10.1016/j.ijheatmasstransfer.2018.09.092
5.
Zhang
,
J.
,
Zhang
,
T.
,
Prakash
,
S.
, and
Jaluria
,
Y.
,
2014
, “
Experimental and Numerical Study of Transient Electronic Chip Cooling by Liquid Flow in Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
65
(
7
), pp.
627
643
. 10.1080/10407782.2013.846594
6.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
,
2005
, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages’
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1472
1487
. 10.1016/j.applthermaleng.2004.09.014
7.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
. 10.1016/j.ijheatmasstransfer.2010.02.022
8.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
, p.
6
.
9.
Xie
,
G.
,
Chen
,
Z.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Numerical Analysis of Flow and Thermal Performance of Liquid-Cooling Microchannel Heat Sinks With Bifurcation
,”
Numer. Heat Transfer, Part A
,
64
(
11
), pp.
902
919
. 10.1080/10407782.2013.807689
10.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
11.
Li
,
J.
, and
Peterson
,
G. P.
,
2006
, “
Geometric Optimization of a Micro Heat Sink With Liquid Flow
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
1
), pp.
145
154
. 10.1109/TCAPT.2005.853170
12.
Li
,
J.
, and
Peterson
,
G. P.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2895
2904
. 10.1016/j.ijheatmasstransfer.2007.01.019
13.
Ma
,
D. D.
,
Xia
,
G. D.
,
Wang
,
J.
,
Yang
,
Y. C.
,
Jia
,
Y. T.
, and
Zong
,
L. X.
,
2017
, “
An Experimental Study on Hydrothermal Performance of Microchannel Heat Sinks With 4-Ports and Offset Zigzag Channels
,”
Energy Convers. Manage.
,
152
, pp.
157
165
. 10.1016/j.enconman.2017.09.052
14.
Hajmohammadi
,
M. R.
, and
Toghraei
,
I.
,
2018
, “
Optimal Design and Thermal Performance Improvement of a Double-Layered Microchannel Heat Sink by Introducing Al2O3 Nano-Particles Into the Water
,”
Phys. A
,
505
, pp.
328
344
. 10.1016/j.physa.2018.03.040
15.
Salman
,
B. H.
,
Mohammed
,
H. A.
,
Munisamy
,
K. M.
, and
Kherbeet
,
A. S.
,
2013
, “
Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel Using Conventional Fluids and Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
848
880
. 10.1016/j.rser.2013.08.012
16.
Dixit
,
T.
, and
Ghosh
,
I.
,
2015
, “
Review of Micro- and Mini-Channel Heat Sinks and Heat Exchangers for Single Phase Fluids
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
1298
1311
. 10.1016/j.rser.2014.09.024
17.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge
.
18.
Li
,
B.
,
Hong
,
J.
, and
Ge
,
L.
,
2017
, “
Constructal Design of Internal Cooling Geometries in Heat Conduction System Using the Optimality of Natural Branching Structures
,”
Int. J. Therm. Sci.
,
115
, pp.
16
28
. 10.1016/j.ijthermalsci.2017.01.007
19.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
. 10.1016/0017-9310(96)00175-5
20.
Mosa
,
M.
,
Labat
,
M.
, and
Lorente
,
S.
,
2019
, “
Role of Flow Architectures on the Design of Radiant Cooling Panels, a Constructal Approach
,”
Appl. Therm. Eng.
,
150
, pp.
1345
1352
. 10.1016/j.applthermaleng.2018.12.107
21.
Mosa
,
M.
,
Labat
,
M.
, and
Lorente
,
S.
,
2019
, “
Constructal Design of Flow Channels for Radiant Cooling Panels
,”
Int. J. Therm. Sci.
,
145
, p.
106052
. 10.1016/j.ijthermalsci.2019.106052
22.
Ernewein
,
A. M.
, and
Lorente
,
S.
,
2019
, “
Constructal Design of Thermochemical Energy Storage
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1299
1306
. 10.1016/j.ijheatmasstransfer.2018.10.097
23.
Ernewein
,
A. M.
, and
Lorente
,
S.
,
2019
, “
Analysis of Thermochemical Energy Storage in an Elemental Configuration
,”
Nat. Sci. Rep.
,
9
(
1
), p.
15875
. 10.1038/s41598-019-52249-8
24.
Salimpour
,
M. R.
, and
Menbari
,
A.
,
2015
, “
Analytical Optimization of Constructal Channels Used for Cooling a Ring Shaped Body Based on Minimum Flow and Thermal Resistances
,”
Energy
,
81
, pp.
645
651
. 10.1016/j.energy.2015.01.008
25.
Almerbati
,
A.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2018
, “
The Evolutionary Design of Cooling a Plate With One Stream
,”
Int. J. Heat Mass Transfer
,
116
, pp.
9
15
. 10.1016/j.ijheatmasstransfer.2017.08.122
26.
Srinivasan
,
S.
,
Al-Suwaidi
,
S.
, and
Sadr
,
R.
,
2014
, “
Design of a Mini Heat Sink Based on Constructal Theory for Electronic Chip Cooling
,”
Proceedings of the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
,
Chicago, IL
,
Aug. 3
, p. V001T05A007.
27.
Boichot
,
R.
,
Luo
,
L.
, and
Fan
,
Y.
,
2009
, “
Tree-Network Structure Generation for Heat Conduction by Cellular Automaton
,”
Energy Convers. Manage.
,
50
(
2
), pp.
376
386
. 10.1016/j.enconman.2008.09.003
28.
Wei
,
S.
,
Chen
,
L.
, and
Sun
,
F.
,
2009
, “
The Area-Point Constructal Optimization for Discrete Variable Cross-Section Conducting Path
,”
Appl. Energy
,
86
(
7–8
), pp.
1111
1118
. 10.1016/j.apenergy.2008.06.010
29.
Fyrillas
,
M. M.
,
2008
, “
Heat Conduction in a Solid Slab Embedded With a Pipe of General Cross-Section: Shape Factor and Shape Optimization
,”
Int. J. Eng. Sci.
,
46
(
9
), pp.
907
916
. 10.1016/j.ijengsci.2008.03.004
30.
Eslami
,
M.
, and
Jafarpur
,
K.
,
2012
, “
Optimal Distribution of Imperfection in Conductive Constructal Designs of Arbitrary Configurations
,”
J. Appl. Phys.
,
112
(
10
), p.
104905
. 10.1063/1.4766443
31.
Combelles
,
L.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Leaflike Architecture for Cooling a Flat Body
,”
J. Appl. Phys.
,
106
(
4
), p.
044906
. 10.1063/1.3176941
32.
Xu
,
X.
,
Liang
,
X.
, and
Ren
,
J.
,
2007
, “
Optimization of Heat Conduction Using Combinatorial Optimization Algorithms
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1675
1682
. 10.1016/j.ijheatmasstransfer.2006.10.037
33.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Optimal Tree-Shaped Networks for Fluid Flow in a Disc-Shaped Body
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
4911
4924
. 10.1016/S0017-9310(02)00211-9
34.
Gosselin
,
L.
, and
Bejan
,
A.
,
2005
, “
Emergence of Asymmetry in Constructal Tree Flow Networks
,”
J. Appl. Phys.
,
98
(
10
), p.
104903
. 10.1063/1.2133899
35.
Wang
,
X. Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2006
, “
Laminar Heat Transfer in Constructal Microchannel Networks With Loops
,”
ASME J. Electron. Pack.
,
128
(
3
), pp.
273
280
. 10.1115/1.2229228
36.
Xu
,
P.
,
Wang
,
X. Q.
,
Mujumdar
,
A. S.
,
Yap
,
C.
, and
Yu
,
B. M.
,
2009
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets With/Without Loops
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2139
2147
. 10.1016/j.ijthermalsci.2009.03.018
37.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2006
, “
Conduction Tree Networks With Loops for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2626
2635
. 10.1016/j.ijheatmasstransfer.2006.01.017
38.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1643
1652
. 10.1016/S0017-9310(01)00269-1
39.
Ghaedamini
,
H.
,
Salimpour
,
M. R.
, and
Campo
,
A.
,
2011
, “
Constructal Design of Reverting Microchannels for Convective Cooling of a Circular Disc
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1051
1061
. 10.1016/j.ijthermalsci.2011.01.014
40.
Bejan
,
A.
,
Rocha
,
L. A. O.
, and
Lorente
,
S.
,
2000
, “
Thermodynamic Optimization of Geometry: T- and Y-Shaped Constructs of Fluid Streams
,”
Int. J. Therm. Sci.
,
39
(
9–11
), pp.
949
960
. 10.1016/S1290-0729(00)01176-5
41.
Wang
,
Y. K.
,
Zhang
,
J.
,
Zhang
,
Y.
, and
Geng
,
L. L.
,
2019
,
Simulation Technology and Additive Manufacturing
,
Publishing House of Electronics Industry
,
Beijing
.
42.
Liu
,
J.
,
She
,
X. H.
,
Zhang
,
X. S.
,
Ma
,
L.
, and
Zhou
,
W.
,
2016
, “
Experimental Study of a Novel Double Temperature Chiller Based on R32/R236fa
,”
Energy Convers. Manage.
,
124
, pp.
618
626
. 10.1016/j.enconman.2016.06.023
43.
Trutassanawin
,
S.
,
Groll
,
E. A.
,
Garimella
,
S. V.
, and
Cremaschi
,
L.
,
2006
, “
Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
3
), pp.
678
687
. 10.1109/TCAPT.2006.881762
44.
Marcinichen
,
J. B.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2010
, “
Cooling of Microprocessors With Micro-Evaporation: A Novel two-Phase Cooling Cycle
,”
Int. J. Refrig.
,
33
(
7
), pp.
1264
1276
. 10.1016/j.ijrefrig.2010.06.008
45.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2013
,
Fluid Mechanics Fundamentals and Applications
,
McGraw Hill Higher Education
,
New York
.
You do not currently have access to this content.