Abstract

In many engineering applications, the heating condition changes in a millisecond or less, thus to study such conditions, the coaxial thermocouples (CTs) are used because they have fast responding capability. The present study reveals the construction of K, E, and J-type of coaxial thermocouples and comparative investigation of performance parameters such as determination of thermal coefficient resistance, sensitivity, thermal product (TP), transient temperatures, surface heat flux, response time, and the comparative analysis are performed. These coaxial thermocouples are exposed to four different step heat loads (5 kW/m2, 25 kW/m2, 50 kW/m2, and 70 kW/m2) supplied by a continuous-wave type laser source. Subsequently, the transient temperature histories have been captured for 1.5 s, as well as the thermal product and the surface heat flux are assessed through one-dimensional heat conduction modeling for a semi-infinite body. For the known wattage input heat load, the finite element and analytical study have been done to compare the experimental outcomes. The experimental results have reasonable accuracy with the numerical and analytical results. The average error calculated for transient temperatures and evaluated heat flux are ±0.25% and ±2.5%, and the response times of these coaxial thermocouples are calculated as 40 µs, 36 µs, and 46 µs for K, E, and J-type, respectively, which shows the measuring capability of these CTs for short-duration measurements.

References

1.
Kumar
,
R.
,
Sahoo
,
N.
,
Kulkarni
,
V.
, and
Singh
,
A.
,
2011
, “
Laser Based Calibration Technique of Thin Film Gauges for Short Duration Transient Measurements
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
044504
. 10.1115/1.4005075
2.
Sahoo
,
N.
, and
Peetala
,
R. K.
,
2010
, “
Transient Temperature Data Analysis for a Supersonic Flight Test
,”
ASME J. Heat Transfer
,
132
(
8
), p.
084503
. 10.1115/1.4001128
3.
Werschmoeller
,
D.
,
Xiaochun
,
L.
, and
Ehmann
,
K.
,
2012
, “
Measurement of Transient Tool Internal Temperature Fields During Hard Turning by Insert Embedded Thin Film Sensors
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061004
. 10.1115/1.4007621
4.
Manjhi
,
K. S.
, and
Kumar
,
R.
,
2019
, “
Transient Surface Heat Flux Measurement for Short Duration Using K-Type, E-Type and J-Type of Coaxial Thermocouples for Internal Combustion Engine
,”
Measurement
,
136
, pp.
256
268
. 10.1016/j.measurement.2018.12.070
5.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfers Measurements in Short Duration Hypersonic Facilities
,”
AGARDograph-AG-165
, University of Oxford, UK, Advisory Group for Aerospace Research and Development, Paris, France, pp.
47
50
. AD0758590.
6.
Kumar
,
R.
, and
Sahoo
,
N.
,
2013
, “
Dynamic Calibration of a Coaxial Thermocouples for Short Duration Transient Measurements
,”
ASME J. Heat Transfer
,
135
(
12
), p.
124502
. 10.1115/1.4024593
7.
Bendersky
,
D. A.
,
1953
, “
A Special Thermocouple for Measuring Transient Temperatures
,”
Mech. Eng.
,
75
(
2
), pp.
117
121
.
8.
Buttsworth
,
D. R.
,
2001
, “
Assessment of Effective Thermal Product of Surface Junction Thermocouples on Millisecond and Microsecond Time Scales
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
409
429
. 10.1016/S0894-1777(01)00093-0
9.
Taler
,
J.
,
1996
, “
Theory of Transient Experimental Techniques for Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3733
3748
. 10.1016/0017-9310(96)00015-4
10.
Kumar
,
R.
,
Sahoo
,
N.
, and
Kulkarni
,
V.
,
2012
, “
Conduction Based Calibration of Handmade Platinum Thin Film Heat Transfer Gauges for Transient Measurements
,”
Int. J. Heat Mass Transfer
,
55
(
9
), pp.
2707
2713
. 10.1016/j.ijheatmasstransfer.2012.01.026
11.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2011
, “
Dynamic Calibration and Performance of Reliable and Fast Response Temperature Probes in a Shock Tube Facility
,”
Exp. Heat Transfer
,
24
(
2
), pp.
109
132
. 10.1080/08916152.2010.482752
12.
Mohammed
,
M.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2008
, “
Design and Fabrication of Coaxial Surface Junction Thermocouples for Transient Heat Transfer Measurement
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
853
859
. 10.1016/j.icheatmasstransfer.2008.03.009
13.
Sahoo
,
N.
, and
Kumar
,
R.
,
2016
, “
Performance Assessment of Thermal Coaxial Thermocouples During Short-Duration Convective Surface Heating Measurements
,”
Heat Mass Transfer
,
52
(
9
), pp.
2005
2013
. 10.1007/s00231-015
14.
Agarwal
,
S.
,
Sahoo
,
N.
,
Irimpan
,
K. J.
,
Menezes
,
V.
, and
Desai
,
S.
,
2017
, “
Comparative Performance Assessments of Surface Junction Probes for Stagnation Heat Flux Estimation in a Hypersonic Shock Tunnel
,”
Int. J. Heat Mass Transfer
,
114
, pp.
748
757
. 10.1016/j.ijheatmasstransfer.2017.06.109
15.
Manjhi
,
K. S.
, and
Kumar
,
R.
,
2018
, “
Stagnation Point Transient Heat Flux Measurement Analysis From Coaxial Thermocouples, Experimental Heat Transfer
,”
Exp. Heat Transfer
,
31
(
5
), pp.
405
424
. 10.1080/08916152.2018.1431738
16.
Manjhi
,
K. S.
, and
Kumar
,
R.
,
2019
, “
Transient Heat Flux Measurement Analysis From Coaxial Thermocouples at Convective Based Step Heat Load
,”
Numer. Heat Transfer, Part A
,
75
(
3
), pp.
200
216
. 10.1080/10407782.2019.1580955
17.
Lyons
,
P. R. A.
, and
Gai
,
S. L.
,
1988
, “
A Method for the Accurate Determination of the Thermal Product (ρck)1/2 for Thin Film Heat Transfer or Surface Thermocouple Gauges
,”
J. Phys. E: Sci. Instrum.
,
21
(
5
), pp.
445
448
. 10.1088/0022-3735/21/5/005
18.
Sarma
,
S.
,
Sahoo
,
N.
, and
Unal
,
A.
,
2016
, “
Thin-Film Gauges Using Carbon Nanotubes as Composite Layers
,”
ASME J. Eng. Mater. Technol.
,
138
(
4
), p.
041014
. 10.1115/1.4033909
19.
Rout
,
A. K.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2020
, “
Effectiveness of Coaxial Surface Junction Thermal Probe for Transient Measurements Through Laser Based Heat Flux Assessment
,”
Heat Mass Transfer
,
56
(
4
), pp.
1141
1152
. 10.1007/s00231-019-02775-y
20.
Manjhi
,
K. S.
, and
Kumar
,
R.
,
2019
, “
Performance Assessment of K-Type, E-Type and J-Type Coaxial Thermocouples on the Solar Light Beam for Short Duration Transient Measurements
,”
Measurement
,
146
, pp.
343
355
. 10.1016/j.measurement.2019.06.035
21.
Agarwal
,
S.
,
Sahoo
,
N.
, and
Singh
,
R. K.
,
2016
, “
Experimental Techniques for Thermal Product Determination of Coaxial Surface Junction Thermocouples During Short Duration Transient Measurements
,”
Int. J. Heat Mass Transfer
,
103
, pp.
327
335
. 10.1016/j.ijheatmasstransfer.2016.07.062
22.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2011
, “
Thermal Product Estimation Method for Aerodynamics Experiments
,”
J. Eng. Phys. Thermophys.
,
84
(
4
), pp.
849
859
. 10.1007/s10891-011-0542-4
23.
Menezes
,
V.
, and
Bhat
,
S.
,
2010
, “
A Coaxial Thermocouple for Shock Tunnel Applications
,”
Rev. Sci. Instrum.
,
81
(
10
), p.
104905
.
24.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2010
, “
Determination of the Effusivity of Different Scratched Coaxial Temperature Sensors Under Hypersonic Flow
,”
Int. J. Thermophys.
,
31
(
12
), pp.
2305
2322
. 10.1007/s10765-010-0882-x
25.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2010
, “
Fast Response Surface Temperature Sensor for Hypersonic Vehicles
,”
Instrum. Exp. Tech.
,
53
(
1
), pp.
153
159
. 10.1134/S0020441210010288
26.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2007
, “
The Transient Response for Different Types of Erodable Surface Thermocouples Using Finite Element Analysis
,”
Therm. Sci.
,
11
(
4
), pp.
49
64
. 10.2298/TSCI0704049M
27.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2009
, “
Calibration of Rugged, Renewable and Fast Response Temperature Probes in a Hypersonic Flow Facility
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE09)
, Lake Buena Vista, FL, Nov. 13-19, Paper No. IMECE2009-10925.
28.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2011
, “
The Effect of Scratch Technique on the Thermal-Product Value of Temperature Sensors
,”
Thermophys. Aeromech.
,
18
(
1
), pp.
51
64
. 10.1134/S0869864311010070
29.
Bretill
,
S.
,
1992
, “
Thermal Diffusivity and Thermal Conductivity of Chromel, Alumel and Constantan in the Range 100–450K
,”
J. Appl. Phys.
,
72
(
2
), pp.
539
544
. 10.1063/1.351885
30.
Li
,
j.
,
Chen
,
H.
,
Zhang
,
S.
,
Zhang
,
X.
, and
Yu
,
H.
,
2017
, “
On the Response of Coaxial Surface Thermocouples for Transient Aerodynamic Heating Measurements
,”
Exp. Therm. Fluid. Sci.
,
86
, pp.
141
148
. 10.1016/j.expthermflusci.2017.04.011
31.
Manjhi
,
K. S.
, and
Kumar
,
R.
,
2020
, “
Surface Heat Flux Measurements for Short Time-Period on Combustion Chamber With Different Types of Coaxial Thermocouples
,”
Exp. Heat Transfer
,
333
(
3
), pp.
282
303
. 10.1080/08916152.2019.1630031
32.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1950
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
. https://trove.nla.gov.au/version/45412049
33.
Mohammed
,
H. A.
,
Salleh
,
H.
,
Yusoff
,
M. Z.
, and
Campo
,
A.
,
2010
, “
Thermal Product of Type-E Fast Response Temperature Sensors
,”
J. Therm. Sci.
,
19
(
4
), pp.
364
371
. 10.1007/s11630-010-0395-8
34.
Boor
,
C. d.
,
1978
,
A Practical Guide to Spline, Applied Mathematical Sciences
, Vol.
27
,
Springer
,
New York
.
35.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat Transfer Gages: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
. 10.2514/3.3486
36.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
37.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
38.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
. 10.1115/1.3242452
39.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
1992
,
Data Reduction and Error Analysis for the Physical Sciences
,
McGraw-Hill
,
New York
, pp.
235
242
.
You do not currently have access to this content.