Abstract

As a key component of wind turbine, the surface strengthening treatment of wind turbine gear is crucial to enhance its performance and service life. In the process of tooth-by-tooth induction heating, clear temperature distribution and process evolution could realize the lean control of heating effect and quality. In this article, the tooth-by-tooth heating process under the v-shaped inductor was studied to analyze the temperature field morphology and its evolution process. The results show that in the tooth profile region, the boundary morphology of the temperature field near the central section of the heating region conforms to the Boltzmann function, while the far sections conform to the normal distribution. At the end of heating, from the surface to the depth of the heating layer and from the heating center to both sides, both the maximum temperature difference and the distribution temperature are reduced. Meanwhile, the maximum temperature point near the central section is offset during the evolution of the temperature field morphology. The change of physical properties of materials and induced eddy distribution caused by involute structure and the constant change of temperature gradient are the fundamental reasons for the appearance of nonuniform temperature field and temperature excursion. The spatiotemporal variation of the hottest point was found, and the temperature morphology and evolution were revealed, which would provide a theoretical basis for adjusting the temperature distribution of tooth profile according to the requirements of different heating layers.

References

1.
Zapivalov
,
N. P.
,
2011
, “
The 21st Century Power: Tendencies and Prospects
,”
J. Eng. Thermophys.
,
20
(
2
), pp.
139
151
. 10.1134/S1810232811020020
2.
Rudnev
,
V.
,
Akers
,
R. R.
,
Baake
,
E.
,
Ferguson
,
B. L.
, and
Wang
,
C.
,
2014
,
ASM Handbook Volume 4C: Induction Heating and Heat Treatment
,
ASM International
.
3.
Ghaffarpour
,
M.
,
Akbari
,
D.
,
Naeeni
,
H. M.
, and
Ghanbari
,
S.
,
2019
, “
Improvement of the Joint Quality in the High-Frequency Induction Welding of Pipes by Edge Modification
,”
Weld. World
,
63
(
6
), pp.
1561
1572
. 10.1007/s40194-019-00779-0
4.
Li
,
L.
,
Mi
,
G.
,
Zhang
,
X.
,
Xiong
,
L. D.
,
Zhu
,
Z. W.
, and
Wang
,
C. M.
,
2019
, “
The Influence of Induction Pre-Heating on Microstructure and Mechanical Properties of S690QL Steel Joints by Laser Welding
,”
Opt. Technol.
,
119
, p.
105606
. 10.1016/j.optlastec.2019.105606
5.
Bidron
,
G.
,
Doghri
,
A.
,
Malot
,
T.
,
Fournier-Dit-Chabert
,
F.
, and
Peyre
,
P.
,
2020
, “
Reduction of the Cracking Sensitivity of CM-247LC Superalloy Processed by Laser Cladding Using Induction Preheating
,”
J. Mater. Process. Technol.
,
277
, p.
116461
. 10.1016/j.jmatprotec.2019.116461
6.
Lu
,
L.
,
Zhang
,
S.
,
Xu
,
J.
,
He
,
H.
, and
Zhao
,
X.
,
2017
, “
Numerical Study of Titanium Melting by High Frequency Inductive Heating
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2021
2028
. 10.1016/j.ijheatmasstransfer.2017.01.062
7.
Chen
,
X. Y.
,
Yu
,
G.
,
He
,
X. L.
,
Li
,
S. X.
, and
Li
,
Z. Y.
,
2020
, “
Numerical Study of Heat Transfer and Solute Distribution in Hybrid Laser-MIG Welding
,”
Int. J. Therm. Sci.
,
149
, p.
106182
. 10.1016/j.ijthermalsci.2019.106182
8.
Doyon
,
G.
,
Brown
,
D.
,
Rudnev
,
V.
,
Andrea
,
F.
,
Sitwala
,
C.
, and
Almeida
,
E.
,
2009
, “
Induction Heating Helps Put Wind Turbines in High Gear
,”
Heat Treat. Prog.
,
9
(
5
), pp.
55
58
.
9.
He
,
Y. Z.
,
Yang
,
R. Z.
,
Zhang
,
H.
,
Zhou
,
D.
, and
Wang
,
G.
,
2017
, “
Volume or Inside Heating Thermography Using Electromagnetic Excitation for Advanced Composite Materials
,”
Int. J. Therm. Sci.
,
111
, pp.
41
49
. 10.1016/j.ijthermalsci.2016.08.007
10.
Giwa
,
S. O.
,
Sharifpur
,
M.
, and
Meyer
,
J. P.
,
2020
, “
Effects of Uniform Magnetic Induction on Heat Transfer Performance of Aqueous Hybrid Ferrofluid in a Rectangular Cavity
,”
Appl. Therm. Eng.
,
170
, p.
115004
. 10.1016/j.applthermaleng.2020.115004
11.
Sheikholeslami
,
M.
,
Shehzad
,
S. A.
, and
Li
,
Z.
,
2018
, “
Nanofluid Heat Transfer Intensification in a Permeable Channel Due to Magnetic Field Using Lattice Boltzmann Method
,”
Phys. B
,
542
, pp.
51
58
. 10.1016/j.physb.2018.03.036
12.
Wang
,
Y. Z.
,
Gao
,
B.
,
Tian
,
G. Y.
,
Woo
,
W. L.
, and
Miao
,
Y. Q.
,
2016
, “
Diffusion and Separation Mechanism of Transient Electromagnetic and Thermal Fields
,”
Int. J. Therm. Sci.
,
102
, pp.
308
318
. 10.1016/j.ijthermalsci.2015.11.016
13.
Gendron
,
M.
,
Hazel
,
B.
,
Boudreault
,
E.
,
Champliaud
,
H.
, and
Pham
,
X. T.
,
2019
, “
Coupled Thermo-Electromagnetic Model of a New Robotic High-Frequency Local Induction Heat Treatment System for Large Steel Components
,”
Appl. Therm. Eng.
,
150
, pp.
372
385
. 10.1016/j.applthermaleng.2018.12.156
14.
Mizonov
,
V.
, and
Yelin
,
N.
,
2015
, “
Numerical Study of Melting a Rod by Periodically Moving Local Heating Source
,”
Int. J. Therm. Sci.
,
97
, pp.
1
8
. 10.1016/j.ijthermalsci.2015.06.005
15.
Han
,
Y.
,
Yu
,
E. L.
, and
Zhao
,
T. X.
,
2016
, “
Three-Dimensional Analysis of Medium-Frequency Induction Heating of Steel Pipes Subject to Motion Factor
,”
Int. J. Heat Mass Transfer
,
10
, pp.
452
460
. 10.1016/j.ijheatmasstransfer.2016.05.017
16.
Wen
,
H. Y.
, and
Han
,
Y.
,
2017
, “
Study on Mobile Induction Heating Process of Internal Gear Rings for Wind Power Generation
,”
Appl. Therm. Eng.
,
112
, pp.
507
515
. 10.1016/j.applthermaleng.2016.10.113
17.
Jang
,
J. Y.
, and
Chiu
,
Y. W.
,
2007
, “
Numerical and Experimental Thermal Analysis for a Metallic Hollow Cylinder Subjected to Step-Wise Electro-Magnetic Induction Heating
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1883
1894
. 10.1016/j.applthermaleng.2006.12.025
18.
Han
,
Y.
,
Xiao
,
Y.
,
Yu
,
E. L.
, and
Wang
,
L. M.
,
2018
, “
Electromagnetic Heating and Motion Mechanism for Contact Welded Pipes Based on a Node Sequential Number Method
,”
Appl. Therm. Eng.
,
137
, pp.
822
835
. 10.1016/j.applthermaleng.2018.03.101
19.
Kranjc
,
M.
,
Zupanic
,
A.
,
Miklavcic
,
D.
, and
Jarm
,
T.
,
2010
, “
Numerical Analysis and Thermographic Investigation of Induction Heating
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3585
3591
. 10.1016/j.ijheatmasstransfer.2010.04.030
You do not currently have access to this content.