Abstract

Flow, thermal, and emission characteristics of turbulent nonpremixed CH4 flames were investigated for three burner heads of different cone heights. The fuel velocity was kept constant at 15 m/s, while the coflow air speed was varied between 0 and 7.4 m/s. Detailed radial profiles of the velocity and temperature were obtained in the bluff body wake at three vertical locations of 0.5D, 1D, and 1.5D. Emissions of CO2, CO, NOx, and O2 were also measured at the tail end of every flame. Flames were digitally photographed to support the point measurements with the visual observations. Fifteen different stability points were examined, which were the results of three bluff body variants and five coflow velocities. The results show that a blue-colored ring flame is formed, especially at high coflow velocities. The results also illustrate that depending on the mixing at the bluff-body wake, the flames exhibit two modes of combustion regimes, namely fuel jet- and coflow-dominated flames. In the jet-dominated regime, the flames become longer when compared with the flames of the coflow-dominated regime. In the latter regime, emissions were largely reduced due to the dilution by the excess air, which also surpasses their production.

References

1.
Poinsot
,
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
,
Philadelphia
,
R.T. Edwards Inc.
, pp.
214
215
.
2.
Peters
,
N.
,
1992
, “
Fifteen Lectures on Laminar and Turbulent Combustion
,”
Ercoftac Summer School, Sept. 14–28
.
3.
European Commission
,
2013
, “
Ecodesign requirements for space heaters and combination heaters
”,
Commission regulation (EU) No 813/2013
.
4.
Ata
,
A.
, and
Ozdemir
,
I. B.
,
2019
, “
Effects of the Cone Angle on the Stability of Turbulent Nonpremixed Flames Downstream of a Conical Bluff Body
,”
Heat Mass Transfer
,
56
(
5
), pp.
1627
1639
. 10.1007/s00231-019-02789-6
5.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion Concepts and Applications
, 2nd ed.,
McGraw-Hill
,
Singapore
, pp.
18
24
.
6.
Peters
,
N.
,
2002
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge
, pp.
170
172
.
7.
Günther
,
R.
, and
Wittmer
,
V.
,
1981
, “
The Turbulent Reaction Field in a Concentric Diffusion Flame
,”
Eighteenth Symposium (International) on Combustion
,
Waterloo, Canada
,
Aug. 17–22, 1980
, Vol.
18
, No.
1
, pp.
961
967
.
8.
Basu
,
P.
,
Kefa
,
C.
, and
Jestin
,
L.
,
2000
,
Boilers and Burners Design and Theory
,
Springer-Verlag
,
New York
, pp.
108
118
.
9.
Baukal
,
C. E. J.
,
2000
,
Heat Transfer in Industrial Combustion
,
CRC Press LLC
,
Florida
, pp.
8
21
.
10.
Dally
,
B. B.
, and
Masri
,
A. R.
,
1996
, “
Turbulent Nonpremixed Flames Stabilised on a Bluff-Body Burner
,”
Proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames
,
Naples, Italy
,
July 26–27
, Section 1, pp.
47
52
.
11.
Masri
,
A. R.
,
1998
, “
Computation of Bluff-Body Stabilised Jets and Flames
,”
Proceedings of the Third International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames
,
Boulder, CO
,
July 30—Aug. 1
, Section 4, pp.
1
21
.
12.
Kalt
,
P. A. M.
, and
Masri
,
A. R.
,
2002
, “
Bluff-Body Stabilised Jets and Flames
,”
Sixth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames
,
Sapparo, Japan
,
July 18–20
, pp.
137
171
.
13.
Dally
,
B. B.
,
Fletcher
,
D. F.
, and
Masri
,
A. R.
,
1998
, “
Flow and Mixing Fields of Turbulent Bluff-Body Jets and Flames
,”
Combust. Theor. Model.
,
2
(
2
), pp.
193
219
. 10.1088/1364-7830/2/2/006
14.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
,
1980
, “
On Flame Stabilization by Bluff-Bodies
,”
J. Eng. Power
,
102
(
1
), pp.
209
214
. 10.1115/1.3230225
15.
Guo
,
P.
,
Zang
,
S.
, and
Ge
,
B.
,
2010
, “
Technical Brief: Predictions of Flow Field for Circular-Disk Bluff-Body Stabilized Flame Investigated by Large Eddy Simulation and Experiments
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
054503
. 10.1115/1.3205029
16.
Chen
,
Y. C.
,
Chang
,
C. C.
,
Pan
,
K. L.
, and
Yang
,
J. T.
,
1998
, “
Flame Lift-Off and Stabilization Mechanisms of Nonpremixed Jet Flames on a Bluff-Body Burner
,”
Combust. Flame
,
115
(
1–2
), pp.
51
65
. 10.1016/S0010-2180(97)00336-2
17.
Mishra
,
D. P.
, and
Kiran
,
D. Y.
,
2009
, “
Experimental Studies of Bluff-Body Stabilized LPG Diffusion Flames
,”
Fuel
,
88
(
3
), pp.
573
578
. 10.1016/j.fuel.2008.09.027
18.
Correa
,
S. M.
, and
Gulati
,
A.
,
1992
, “
Measurements and Modeling of a Bluff Body Stabilized Flame
,”
Combust. Flame
,
89
(
2
), pp.
195
213
. 10.1016/0010-2180(92)90028-N
19.
Namazian
,
M.
,
Kelly
,
J.
, and
Schefer
,
R. W.
,
1992
, “
Concentration Imaging Measurements in Turbulent Concentric-jet Flows
,”
AIAA J.
,
30
(
2
), pp.
384
394
. 10.2514/3.10929
20.
Schefer
,
R. W.
,
Namazian
,
M.
, and
Kelly
,
J.
,
1994
, “
Velocity Measurements in Turbulent Bluff-Body Stabilized Flows
,”
AIAA J.
,
32
(
9
), pp.
1844
1851
. 10.2514/3.12182
21.
Schefer
,
R. W.
,
Namazian
,
M.
, and
Kelly
,
J.
,
1987
, “
Velocity Measurements in a Turbulent Nonpremixed Bluff-Body Stabilized Flame
,”
Combust. Sci. Technol.
,
56
(
4–6
), pp.
101
138
. 10.1080/00102208708947084
22.
Roquemore
,
W. M.
,
Tankin
,
R. S.
,
Chiu
,
H. H.
, and
Lottes
,
S. A.
,
1986
, “
A Study of a Bluff-Body Combustor Using Laser Sheet Lighting
,”
Combust. Sci. Technol.
,
4
(
4
), pp.
205
213
. 10.1007/bf00717816
23.
Masri
,
A. R.
,
Kelman
,
J. B.
, and
Dally
,
B. B.
,
1998
, “
The Instantaneous Spatial Structure of the Recirculation Zone in Bluff-Body Stabilized Flames
,”
Twenty-Seventh Symposium (International) on Combustion
,
Boulder, CO
,
Aug. 2–7
, pp.
1031
1038
.
24.
Masri
,
A. R.
,
Dibble
,
R. W.
, and
Barlow
,
R. S.
,
1996
, “
The Structure of Turbulent Nonpremixed Flames Revealed by Raman-Rayleigh-LIF Measurements
,”
Prog. Energy Combust. Sci.
,
22
(
4
), pp.
307
362
. 10.1016/S0360-1285(96)00009-3
25.
Masri
,
A. R.
,
Dally
,
B. B.
,
Barlow
,
R. S.
, and
Carter
,
C. D.
,
1994
, “
The Structure of the Recirculation Zone of a Bluff-Body Combustor
,”
Twenty-Fifth Symposium (International) on Combustion
,
Irvine, CA
,
July 31—Aug. 5
, 25(1), pp.
1301
1308
.
26.
Özdemir
,
I. B.
,
2018
, “
A Modification to Temperature-Composition PDF Method and Its Application to the Simulation of a Transitional Bluff-Body Flame
,”
Comput. Math. Appl.
,
75
(
7
), pp.
2574
2592
. 10.1016/j.camwa.2017.12.031
27.
Ma
,
H. K.
, and
Harn
,
J. S.
,
1994
, “
The jet Mixing Effect on Reaction Flow in a Bluff-Body Burner
,”
Int. J. Heat Mass Tranfer
,
37
(
18
), pp.
2957
2967
. 10.1016/0017-9310(94)90350-6
28.
Rowhani
,
A.
,
Chinnici
,
A.
,
Evans
,
M. J.
,
Medwell
,
P. R.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2018
, “
Variation of Residence Time in non-Premixed Turbulent Bluff-Body Ethylene Flames as a Function of Burner Diameter
,”
21st Australian Fluid Mechanics Conference
,
Adelaide, Australia
,
Dec. 10–13
.
29.
Rowhani
,
A.
,
Sun
,
Z. W.
,
Medwell
,
P. R.
,
Alwahabi
,
Z. T.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2019
, “
Effects of the Bluff-Body Diameter on the Flow- Field Characteristics of Non-Premixed Turbulent Highly-Sooting Flames
,”
Combust. Sci. Technol.
, pp.
1
19
. 10.1080/00102202.2019.1680508
30.
Yang
,
J. T.
,
Chang
,
C. C.
, and
Pan
,
K. L.
,
2002
, “
Flow Structures and Mixing Mechanisms Behind a Disc Stabilizer with a Central Fuel Jet
,”
Combust. Sci. Technol.
,
174
(
3
), pp.
93
124
. 10.1080/713712993
31.
Huang
,
R. F.
, and
Lin
,
C. L.
,
1994
, “
Characteristic Modes and Thermal Structure of Nonpremixed Circular-Disc Stabilized Flames
,”
Combust. Sci. Technol.
,
100
(
1–6
), pp.
123
139
. 10.1080/00102209408935449
32.
Huang
,
R. F.
, and
Lin
,
C. L.
,
2000
, “
Velocity Fields of Nonpremixed Bluff-Body Stabilized Flames
,”
J. Energy Resour. Technol.
,
122
(
2
), pp.
88
93
. 10.1115/1.483166
33.
Yang
,
J. T.
,
Chang
,
C. C.
,
Pan
,
K. L.
,
Kang
,
Y. P.
, and
Lee
,
Y. P.
,
2002
, “
Thermal Analysis and PLIF Imaging of Reacting Flow Behind a Disc Stabilizer with a Central Fuel Jet
,”
Combust. Sci. Technol.
,
174
(
3
), pp.
71
92
. 10.1080/713712996
34.
Esquiva-Dano
,
I.
,
Nguyen
,
H. T.
, and
Escudié
,
D.
,
2001
, “
Influence of a Bluff-Body’s Shape on the Stabilization Regime of non-Premixed Flames
,”
Combust. Flame
,
127
(
4
), pp.
2167
2180
. 10.1016/S0010-2180(01)00318-2
35.
Esquiva-Dano
,
I.
, and
Escudié
,
D.
,
2005
, “
A Way of Considering the Influence of the Bluff-Body Geometry on the Nonpremixed Flame Stabilization Process
,”
Combust. Flame
,
142
(
3
), pp.
299
302
. 10.1016/j.combustflame.2004.10.001
36.
Pinguet
,
G.
, and
Escudié
,
D.
,
2007
, “
Experimental Study of the Stabilization Process of a Non-Premixed Flame via the Destabilization Analysis of the Blue Ring Flame
,”
Exp. Therm. Fluid Sci.
,
31
(
5
), pp.
453
460
. 10.1016/j.expthermflusci.2006.04.014
37.
Taylor
,
A. M. K. P.
, and
Whitelaw
,
J. H.
,
1984
, “
Velocity Characteristics in the Turbulent Near Wakes of Confined Axisymmetric Bluff Bodies
,”
J. Fluid Mech.
,
139
, pp.
391
416
. 10.1017/S0022112084000410
38.
Tang
,
H.
,
Yang
,
D.
,
Zhang
,
T.
, and
Zhu
,
M.
,
2013
, “
Characteristics of Flame Modes for a Conical Bluff Body Burner with a Central Fuel jet
,”
J. Eng. Gas Turbines Power
,
135
(
9
), p.
091507
. 10.1115/1.4024951
39.
San
,
K. C.
,
Huang
,
Y. Z.
, and
Yen
,
S. C.
,
2013
, “
Flame Patterns and Combustion Intensity Behind Rifled Bluff-Body Frustums
,”
J. Eng. Gas Turbines Power
,
135
(
12
), p.
121502
. 10.1115/1.4025262
40.
Huang
,
R. F.
,
Kivindu
,
R. M.
, and
Hsu
,
C. M.
,
2017
, “
Flame Behavior and Thermal Structure of Combusting Plane Jets with and Without Self-Excited Transverse Oscillations
,”
Heat Mass Transfer
,
54
(
6
), pp.
1681
1696
. 10.1007/s00231-017-2268-0
41.
Gendy
,
T. S.
,
El-Shiekh
,
T. M.
, and
Zakhary
,
A. S.
,
2015
, “
A Polynomial Regression Model for Stabilized Turbulent Confined jet Diffusion Flames Using Bluff Body Burners
,”
Egypt. J. Pet.
,
24
(
4
), pp.
445
453
. 10.1016/j.ejpe.2015.06.001
42.
Snegirev
,
A.
,
Markus
,
E.
,
Kuznetsov
,
E.
,
Harris
,
J.
, and
Wu
,
T.
,
2018
, “
On Soot and Radiation Modeling in Buoyant Turbulent Diffusion Flames
,”
Heat Mass Transfer
,
54
(
8
), pp.
2275
2293
. 10.1007/s00231-017-2198-x
43.
Blokh
,
A. G.
, and
Shchelokov
,
A. I.
,
1990
, “
A Mathematical Model of Soot Formation in Natural Gas Combustion. 1. Kinetic Equation and Critical Temperature of the Dehydrogenization Process
,”
J. Eng. Phys.
,
59
(
3
), pp.
1190
1196
. 10.1007/BF00870515
44.
Mishra
,
D. P.
, and
Kumar
,
P.
,
2010
, “
Experimental Study of Bluff-Body Stabilized LPG–H2 Jet Diffusion Flame With Preheated Reactant
,”
Fuel
,
89
(
1
), pp.
212
218
. 10.1016/j.fuel.2009.07.030
45.
Elbaz
,
A. M.
,
Zayed
,
M. F.
,
Samy
,
M.
,
Roberts
,
W. L.
, and
Mansour
,
M. S.
,
2016
, “
The Flow Field Structure of Highly Stabilized Partially Premixed Flames in a Concentric Flow Conical Nozzle Burner With Coflow
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
2
9
. 10.1016/j.expthermflusci.2015.08.016
46.
Kumar
,
P.
, and
Mishra
,
D. P.
,
2008
, “
Effects of Bluff-Body Shape on LPG–H2 jet Diffusion Flame
,”
Int. J. Hydrogen Energy
,
33
(
10
), pp.
2578
2585
. 10.1016/j.ijhydene.2008.02.075
47.
Yen
,
S. C.
,
Shih
,
C. L.
, and
San
,
K. C.
,
2017
, “
Non-premixed Flame Characteristics and Exhaust gas Concentrations Behind Rifled Bluff-Body Cones
,”
J. Energy Inst.
,
91
(
4
), pp.
489
501
. 10.1016/j.joei.2017.04.008
48.
Yen
,
S. C.
,
Huang
,
Y. Z.
, and
San
,
K. C.
,
2015
, “
Thermal Characteristics and Exhaust-Gas Analysis Behind Bluff-Body Frustums
,”
Fuel
,
159
, pp.
519
529
. 10.1016/j.fuel.2015.07.021
49.
Tong
,
Y.
,
Liu
,
X.
,
Wang
,
Z.
,
Richter
,
M.
, and
Klingmann
,
J.
,
2018
, “
Experimental and Numerical Study on Bluff-Body and Swirl Stabilized Diffusion Flames
,”
Fuel
,
217
, pp.
352
364
. 10.1016/j.fuel.2017.12.061
50.
Dutka
,
M.
,
Ditaranto
,
M.
, and
Løvås
,
T.
,
2016
, “
NOX Emissions and Turbulent Flow Field in a Partially Premixed Bluff Body Burner with CH4 and H2 Fuels
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12397
12410
. 10.1016/j.ijhydene.2016.05.154
51.
Driscoll
,
J. F.
,
Chen
,
R. H.
, and
Yoon
,
Y.
,
1992
, “
Nitric Oxide Levels of Turbulent Jet Diffusion Flames: Effects of Residence Time and Damkohler Number
,”
Combust. Flame
,
88
(
1
), pp.
37
49
. 10.1016/0010-2180(92)90005-A
52.
Glassman
,
I.
,
1977
,
Combustion
,
Academic Press Inc.
,
New York
, pp.
210
226
.
53.
Umyshev
,
D. R.
,
Dostiyarov
,
A. M.
,
Kibarin
,
A. A.
,
Tyutebayeva
,
G. M.
,
Katranova
,
G. S.
, and
Akpanbetov
,
D. B.
,
2019
, “
Experimental Investigation of Distance Between V-Gutters on Flame Stabilization and NOx Emissions
,”
Therm. Sci.
,
23
(
5B
), pp.
2971
2981
. 10.2298/TSCI180503007U
You do not currently have access to this content.