Abstract

A power surge is a frequent phenomenon that occurs in electronics. Inadequate and improper cooling during power surges results in a rapid increase in operating temperatures that may lead to failure of the electronics. In the present investigation, the thermal characteristics of a phase change material (PCM)-based heat sinks, having different configurations and orientations of fins, subject to (i) constant heat load and (ii) heat load with a power surge, are studied numerically. Preliminary investigations showed that a heat sink with PCM gets heated at a much lower temperature than an air cooled heat sink. Following this, four finned heat sinks are considered for further investigations. The heat sink with PCM, sans fins, is used for baseline comparison. The orientation of fins in the other four heat sinks is either vertical or horizontal with square and rectangular cross sections. The heat sink and fins are made of aluminum, and the PCM used is n-eicosane (C20 H42). The enthalpy-porosity method is used to model the solid–liquid phase change in the PCM. All the transient three-dimensional numerical simulations are carried out using ansys fluent 15.0. For a constant heat load of 5 W and power surges of various magnitudes at different time instants, the heat sink with vertical square fins shows superior performance. However, the performance variation among the heat sinks with different fin configurations is insignificant for constant heat load. Even so, for power surges, the location and the configuration of fins have a significant effect on the heater temperature. Cases with high power surge and shorter duration of the surge were also considered to critically examine the effect of fins in controlling the maximum temperature in the heat sink. The numerical results of the best-performing heat sink, i.e., the heat sink with vertical square fins, are finally validated against in-house experiments.

References

1.
Wijekoon
,
T.
,
Empringham
,
L.
,
Wheeler
,
P.
, and
Clare
,
J.
,
2009
, “
Compact Dual-Output Power Converter for an Aerospace Electrical Landing Gear Actuation System
,”
2009 13th European Conference on Power Electronics and Applications
,
Barcelona, Spain
,
Sept. 8–10
,
IEEE
, pp.
1
10
.
2.
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Thermal Performance of a Pcm Heat Sink Under Different Heat Loads: An Experimental Study
,”
Int. J. Therm. Sci.
,
79
, pp.
240
249
. 10.1016/j.ijthermalsci.2013.12.018
3.
Javani
,
N.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2015
, “
Numerical Modeling of Submodule Heat Transfer With Phase Change Material for Thermal Management of Electric Vehicle Battery Packs
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031005
. 10.1115/1.4029053
4.
Wilke
,
S.
,
Schweitzer
,
B.
,
Khateeb
,
S.
, and
Al-Hallaj
,
S.
,
2017
, “
Preventing Thermal Runaway Propagation in Lithium Ion Battery Packs Using a Phase Change Composite Material: An Experimental Study
,”
J. Power. Sources.
,
340
, pp.
51
59
. 10.1016/j.jpowsour.2016.11.018
5.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1652
1661
. 10.1016/j.applthermaleng.2005.11.022
6.
Kizilel
,
R.
,
Lateef
,
A.
,
Sabbah
,
R.
,
Farid
,
M.
,
Selman
,
J.
, and
Al-Hallaj
,
S.
,
2008
, “
Passive Control of Temperature Excursion and Uniformity in High-Energy Li-Ion Battery Packs At High Current and Ambient Temperature
,”
J. Power. Sources.
,
183
(
1
), pp.
370
375
. 10.1016/j.jpowsour.2008.04.050
7.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2017
, “
Hybrid Cooling System for Electronics Equipment During Power Surge Operation
,”
IEEE Trans. Compon., Pack. Manufact. Tech.
,
8
(
3
), pp.
416
426
. 10.1109/TCPMT.2017.2756919
8.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of Pcm Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
. 10.1016/j.applthermaleng.2012.10.056
9.
Wu
,
S.
,
Yan
,
T.
,
Kuai
,
Z.
, and
Pan
,
W.
,
2019
, “
Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review
,”
Energy Storage Mater.
,
25
, pp.
1
912
. 10.1016/j.ensm.2019.10.010
10.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
,
2005
, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy. Convers. Manage.
,
46
(
6
), pp.
847
867
. 10.1016/j.enconman.2004.06.010
11.
Py
,
X.
,
Olives
,
R.
, and
Fals
,
S.
,
2001
, “
Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material
,”
Int. J. Heat. Mass. Transfer.
,
44
(
14
), pp.
2727
2737
. 10.1016/S0017-9310(00)00309-4
12.
Alshaer
,
W.
,
Nada
,
S.
,
Rady
,
M.
,
Le Bot
,
C.
, and
Del Barrio
,
E. P.
,
2015
, “
Numerical Investigations of Using Carbon Foam/pcm/nano Carbon Tubes Composites in Thermal Management of Electronic Equipment
,”
Energy. Convers. Manage.
,
89
, pp.
873
884
. 10.1016/j.enconman.2014.10.045
13.
Thapa
,
S.
,
Chukwu
,
S.
,
Khaliq
,
A.
, and
Weiss
,
L.
,
2014
, “
Fabrication and Analysis of Small-Scale Thermal Energy Storage With Conductivity Enhancement
,”
Energy. Convers. Manage.
,
79
, pp.
161
170
. 10.1016/j.enconman.2013.12.019
14.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2008
, “
Numerical Investigation of a PCM Based Heat Sink With Internal Fins: Constant Heat Flux
,”
Int. J. Heat. Mass. Transfer.
,
51
(
5–6
), pp.
1488
1493
. 10.1016/j.ijheatmasstransfer.2007.11.036
15.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat. Mass. Transfer.
,
55
(
5–6
), pp.
1642
1649
. 10.1016/j.ijheatmasstransfer.2011.11.020
16.
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2004
, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Components Pack. Technol.
,
27
(
1
), pp.
191
199
. 10.1109/TCAPT.2004.825758
17.
Kothari
,
R.
,
Mahalkar
,
P.
,
Sahu
,
S. K.
, and
Kundalwal
,
S. I.
,
2018
, “
Experimental Investigations on Thermal Performance of Pcm Based Heat Sink for Passive Cooling of Electronic Components
,”
ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
,
Dubrovnik, Croatia
,
June 10–13
, Vol.
51197
, p.
V001T11A005
.
18.
Srivatsa
,
P.
,
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Numerical Investigation of PCM Based Heat Sinks With Embedded Metal Foam/Crossed Plate Fins
,”
Numerical Heat Transfer Part A Appl.
,
66
(
10
), pp.
1131
1153
. 10.1080/10407782.2014.894371
19.
Saha
,
S.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2008
, “
Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials
,”
ASME J. Heat. Transfer.
,
130
(
3
), p.
034505
. 10.1115/1.2804948
20.
Voller
,
V.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modeling Methodology for Convection Diffusion Mushy Region Phase-Change Problem
,”
Int. J. Heat Mass Transfer
,
30
(
9
), pp.
1709
1719
. 10.1016/0017-9310(87)90317-6
21.
Tomizawa
,
Y.
,
Sasaki
,
K.
,
Kuroda
,
A.
,
Takeda
,
R.
, and
Kaito
,
Y.
,
2016
, “
Experimental and Numerical Study on Phase Change Material (pcm) for Thermal Management of Mobile Devices
,”
Appl. Therm. Eng.
,
98
, pp.
320
329
. 10.1016/j.applthermaleng.2015.12.056
22.
Srikanth
,
R.
,
Nemani
,
P.
, and
Balaji
,
C.
,
2015
, “
Multi-Objective Geometric Optimization of a PCM Based Matrix Type Composite Heat Sink
,”
Appl. Energy.
,
156
, pp.
703
714
. 10.1016/j.apenergy.2015.07.046
23.
ANSYS Fluent
,
2013
,
ANSYS Fluent Theory Guide 15.0
,
ANSYS, Inc.
,
Canonsburg, PA
.
24.
Arshad
,
A.
,
Ali
,
H. M.
,
Yan
,
W.-M.
,
Hussein
,
A. K.
, and
Ahmadlouydarab
,
M.
,
2018
, “
An Experimental Study of Enhanced Heat Sinks for Thermal Management Using n-Eicosane as Phase Change Material
,”
Appl. Therm. Eng.
,
132
, pp.
52
66
. 10.1016/j.applthermaleng.2017.12.066
25.
Jaya Krishna
,
D.
,
2018
, “
Operational Time and Melt Fraction Based Optimization of a Phase Change Material Longitudinal Fin Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
064502
. 10.1115/1.4040988
26.
Wang
,
X.-Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2008
, “
A Parametric Study of Phase Change Material (PCM)-Based Heat Sinks
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1055
1068
. 10.1016/j.ijthermalsci.2007.07.016
27.
Yoo
,
D.-w.
, and
Joshi
,
Y. K.
,
2004
, “
Energy Efficient Thermal Management of Electronic Components Using Solid-Liquid Phase Change Materials
,”
IEEE Trans. Device Mater. Reliabil.
,
4
(
4
), pp.
641
649
. 10.1109/TDMR.2004.840854
28.
Shaikh
,
S.
, and
Lafdi
,
K.
,
2010
, “
C/c Composite, Carbon Nanotube and Paraffin Wax Hybrid Systems for the Thermal Control of Pulsed Power in Electronics
,”
Carbon
,
48
(
3
), pp.
813
824
. 10.1016/j.carbon.2009.10.034
29.
Yang
,
X.-H.
,
Tan
,
S.-C.
,
Ding
,
Y.-J.
,
Wang
,
L.
,
Liu
,
J.
, and
Zhou
,
Y.-X.
,
2017
, “
Experimental and Numerical Investigation of Low Melting Point Metal Based PCM Heat Sink With Internal Fins
,”
Int. Communi. Heat Mass Transfer
,
87
, pp.
118
124
. 10.1016/j.icheatmasstransfer.2017.07.001
30.
Stupar
,
A.
,
Drofenik
,
U.
, and
Kolar
,
J. W.
,
2011
, “
Optimization of Phase Change Material Heat Sinks for Low Duty Cycle High Peak Load Power Supplies
,”
IEEE Trans. Components, Packaging Manufact. Technol.
,
2
(
1
), pp.
102
115
. 10.1109/TCPMT.2011.2168957
31.
Hosseinizadeh
,
S.
,
Tan
,
F.
, and
Moosania
,
S.
,
2011
, “
Experimental and Numerical Studies on Performance of PCM-Based Heat Sink With Different Configurations of Internal Fins
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3827
3838
. 10.1016/j.applthermaleng.2011.07.031
You do not currently have access to this content.