Abstract

The extremely hot environment attributed to the combustion and aerodynamic heating exposes the scramjets to intense thermal-structural loads. The scramjet life is limited due to the wall cracks caused by the large temperature difference. The focus of this study was performing coupled 3D fluid-thermal-structural analysis of the cooling jacket for scramjet engines. Firstly, the mathematical models and the simulation method were established. The three-dimensional computational fluid dynamics numerical simulations were based on the conservation equations of mass, momentum, and energy. Strain compatibility, equilibrium equations, and constitutive law of elastic solids were applied for the 3D static thermal-structural analysis. Secondly, the fluid-thermal-structural analysis was performed. Results show that both large temperature difference and structure geometry have an obvious impact on the deformation of the cooling channel. Highest deformation (2.1%) of the straight square channel occurs at the middle of the hot side ligament. Compared with the straight square channel, the maximum temperature of the triangular channel and the spiral square channel is reduced by 7.3% and 26.1%, and the total deformation is increased by 5.0% and reduced by 28.3%, respectively.

References

1.
Mitani
,
T.
, and
Kouchi
,
T.
,
2005
, β€œ
Flame Structures and Combustion Efficiency Computed for a Mach 6 Scramjet Engine
,”
Combust. Flame
,
142
(
3
), pp.
187
–
196
. 10.1016/j.combustflame.2004.10.004
2.
Thornton
,
E. A.
, and
Dechaumphai
,
P.
,
1988
, β€œ
Coupled Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels
,”
J. Aircraft
,
25
(
11
), pp.
1052
–
1059
. 10.2514/3.45702
3.
Huang
,
H.
,
Spadaccini
,
L. J.
, and
Sobel
,
D. R.
,
2004
, β€œ
Fuel-Cooled Thermal Management for Advanced Aero Engines
,”
J. Eng. Gas Turbines Power.
,
126
(
2
), pp.
284
–
293
. 10.1115/1.1689361
4.
Edwards
,
T.
,
2006
, β€œ
Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels
,”
Combust. Sci. Technol.
,
178
(
1
), pp.
307
–
334
. 10.1080/00102200500294346
5.
Edwards
,
T.
,
2003
, β€œ
Liquid Fuels and Propellants for Aerospace Propulsion: 1903–2003
,”
J. Propul. Power
,
19
(
6
), pp.
1089
–
1107
. 10.2514/2.6946
6.
Zhong
,
F. Q.
,
Fan
,
X. J.
,
Yu
,
G.
, and
Li
,
J. G.
,
2009
, β€œ
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
543
–
550
. 10.2514/1.41619
7.
Zhong
,
F. Q.
,
Fan
,
X. J.
,
Yu
,
G.
, and
Li
,
J. G.
,
2009
, β€œ
Thermal Cracking of Aviation Kerosene for Scramjet Applications
,”
Sci. China Technol. Sci.
,
52
(
9
), pp.
2644
–
2652
. 10.1007/s11431-009-0090-8
8.
Jackson
,
T. A.
,
Eklund
,
D. R.
, and
Fink
,
A. J.
,
2004
, β€œ
High Speed Propulsion: Performance Advantage of Advanced Materials
,”
J. Mater. Sci.
,
39
(
19
), pp.
5905
–
5913
. 10.1023/B:JMSC.0000041687.37448.06
9.
Deng
,
H. W.
,
Zhang
,
C. B.
,
Xu
,
G. Q.
, and
Tao
,
Z.
,
2011
, β€œ
Density Measurements of Endothermic Hydrocarbon Fuel at Sub- and Supercritical Conditions
,”
J. Chem. Eng. Data
,
56
(
6
), pp.
2980
–
2986
. 10.1021/je200258g
10.
Deng
,
H. W.
,
Zhu
,
K.
,
Xu
,
G. Q.
, and
Tao
,
Z.
,
2012
, β€œ
Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions Conditions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
263
–
268
. 10.1021/je200523a
11.
Deng
,
H. W.
,
Zhang
,
C. B.
,
Xu
,
G. Q.
, and
Zhang
,
B.
,
2012
, β€œ
Viscosity Measurements of Endothermic Hydrocarbon Fuel From (298 to 788) K Under Supercritical Pressure Conditions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
358
–
365
. 10.1021/je200901y
12.
Urbano
,
A.
, and
Nasuti
,
F.
,
2013
, β€œ
Conditions for the Occurrence of Heat Transfer Deterioration in Light Hydrocarbons Flows
,”
Int. J. Heat Mass Transfer
,
65
(
5
), pp.
599
–
609
.
13.
Urbano
,
A.
, and
Nasuti
,
F.
,
2013
, β€œ
Onset of Heat Transfer Deterioration in Supercritical Methane Flow Channels
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
298
–
308
. 10.2514/1.T4001
14.
Zhou
,
W. X.
,
Bao
,
W.
,
Qin
,
J.
, and
Qu
,
Y. F.
,
2011
, β€œ
Deterioration in Heat Transfer of Endothermal Hydrocarbon Fuel
,”
J. Therm. Sci.
,
20
(
2
), pp.
173
–
180
. 10.1007/s11630-011-0454-9
15.
Jiang
,
Y. G.
,
Xu
,
Y. X.
,
Qin
,
J.
,
Zhang
,
S. L.
,
Chetehouna
,
K.
,
Gascoin
,
N.
, and
Bao
,
W.
,
2018
, β€œ
The Flow Rate Distribution of Hydrocarbon Fuel in Parallel Channels With Different Cross Section Shapes
,”
Appl. Therm. Eng.
,
137
, pp.
173
–
183
. 10.1016/j.applthermaleng.2018.03.033
16.
Sunden
,
B.
,
Wu
,
Z.
, and
Huang
,
D.
,
2016
, β€œ
Comparison of Heat Transfer Characteristics of Aviation Kerosene Flowing in Smooth and Enhanced Mini Tubes at Supercritical Pressures
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3/4
), pp.
1289
–
1308
. 10.1108/HFF-12-2015-0538
17.
Youn
,
B.
, and
Mills
,
A. F.
,
1995
, β€œ
Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft
,”
J. Thermophys. Heat Transfer
,
9
(
1
), pp.
136
–
143
. 10.2514/3.639
18.
Liu
,
D.
,
Sun
,
B.
,
Wang
,
T. P.
,
Song
,
J. W.
, and
Zhang
,
J. W.
,
2020
, β€œ
Thermo-Structural Analysis of Regenerative Cooling Thrust Chamber Cylinder Segment Based on Experimental Data
,”
Chin. J. Aeronaut.
,
33
(
1
), pp.
102
–
115
. 10.1016/j.cja.2019.09.023
19.
Yan
,
D.
,
He
,
G.
,
Li
,
W.
,
Zhang
,
D.
, and
Qin
,
F.
,
2018
, β€œ
Thermal Analysis of Regenerative-Cooled Pylon in Multi-Mode Rocket Based Combined Cycle Engine
,”
Acta Astronaut.
,
148
, pp.
121
–
131
. 10.1016/j.actaastro.2018.04.038
20.
Song
,
J.
, and
Sun
,
B.
,
2018
, β€œ
Damage Localization Effects of the Regeneratively Cooled Thrust Chamber Wall in LOX/Methane Rocket Engines
,”
Chin. J. Aeronaut.
,
31
(
8
), pp.
1667
–
1678
. 10.1016/j.cja.2018.05.016
21.
Kimura
,
T.
,
Moriya
,
S.
, and
Takahashi
,
M.
,
2019
, β€œ
Effects of Heat Treatments to Inner Liner Material, Thermal Barrier Coating and Outer Shell Material on Lifetime of a Combustion Chamber
,”
Acta Astronaut.
,
158
, pp.
244
–
252
. 10.1016/j.actaastro.2018.05.019
22.
Ho
,
S. Y.
, and
Paull
,
A.
,
2006
, β€œ
Coupled Thermal, Structural and Vibrational Analysis of a Hypersonic Engine for Flight Test
,”
Aerosp. Sci. Technol.
,
10
(
5
), pp.
420
–
426
.
23.
Ferraiuolo
,
M.
,
Russo
,
V.
, and
Vafai
,
K.
,
2016
, β€œ
A Comparative Study of Refined and Simplified Thermo-Viscoplastic Modeling of a Thrust Chamber with Regenerative Cooling
,”
Int. Commun. Heat Mass Transfer
,
78
, pp.
155
–
162
. 10.1016/j.icheatmasstransfer.2016.09.003
24.
Mikielewicz
,
D. P.
,
Shehata
,
A.
,
Jackson
,
J.
, and
McEligot
,
D. M.
,
2002
, β€œ
Temperature, Velocity and Mean Turbulence Structure in Strongly Heated Internal gas Flows: Comparison of Numerical Predictions with Data
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp.
4333
–
4352
. 10.1016/S0017-9310(02)00119-9
25.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2010
, β€œ
The Effect of the Low Reynolds Number k–e Turbulence Models on Simulation of the Enhanced and Deteriorated Convective Heat Transfer to the Supercritical Fluid Flows
,”
Heat Mass Transfer
,
47
(
5
), pp.
609
–
619
. 10.1007/s00231-010-0753-9
26.
Liang
,
J. H.
,
Liu
,
Z. Q.
, and
Pan
,
Y.
,
2016
, β€œ
Flight Acceleration Effect on Heat Transfer Deterioration of Sctively Cooled Scramjet Engines
,”
J. Thermophys. Heat Transfer
,
30
(
2
), pp.
279
–
287
. 10.2514/1.T4704
27.
Jiang
,
H.
,
Ervin
,
J.
,
West
,
Z.
, and
Zabarnick
,
S.
,
2013
, β€œ
Turbulent Flow, Heat Transfer Deterioration, and Thermal Oxidation of Jet Fuel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
668
–
678
. 10.2514/1.T4103
28.
Li
,
N.
,
Huang
,
Z. X.
,
Bu
,
Y. F.
, and
Guan
,
Y. K.
,
2020
, β€œ
Effects of Channel Geometries and Acceleration on Heat Transfer of Hydrocarbon Fuel
,”
J. Thermophys. Heat Transfer
,
34
(
3
), pp.
570
–
578
. 10.2514/1.T5939
You do not currently have access to this content.