Abstract

When the steam is used in fluid machinery, the phase-transition can occur and it affects not only the flow fields but also the machine performance. Therefore, to achieve accurate prediction on steam condensing flow using computational fluid dynamics, the phase-transition phenomena should be considered and the proper model which can reflect the non-equilibrium characterisic is required. In the previous study of us, a non-equilibrium condensation model was implemented in T-flow, and several cases on nozzles and cascades were under the consideration. The model showed quite good predictions on the pressure variations including condensation shock. However, the pressure discrepancies in downstream regions were found in all nozzle cases, and the use of ideal gas law as equation of state seemed to be responsible for them. Therefore, IAPWS-95 or IF97 are usually adopted for wet-steam codes, but it entails highly increased computational costs. In this study, the wet-steam model is modified to ensure the accuracy of pressure in nozzle’s downstream region while maintaining the usage of ideal gas equation, which has a benefit to solve the problem quickly. The numerical results of the nozzles are compared with those of the previous wet-steam model, and the results of equilibrium condensation model are also appended. As a result, the accurate predictions are feasible by using the modified non-equilibrium condensation model. In addition, the corrections on liquid surface tension and droplet growth rate are carried out for underestimated droplet sizes and enthalpy, entropy changes throughout the nozzles are investigated.

References

1.
Dykas
,
S.
, and
Wroblewski
,
W.
,
2011
, “
Single- and Two-Fluid Models for Steam Condensing Flow Modelling
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1245
1253
. 10.1016/j.ijmultiphaseflow.2011.05.008
2.
Zhu
,
X.
,
Lin
,
Z.
,
Yuan
,
X.
,
Tejima
,
T.
,
Niizeki
,
Y.
, and
Shibukawa
,
N.
,
2012
, “
Non-equilibrium Condensing Flow Modeling in Nozzle and Turbine Cascade
,”
Int. J. Gas Turbine, Propulsion Power Syst.
,
4
(
3
), pp.
9
16
.
3.
Halama
,
J.
,
2012
, “
Transonic Flow of Wet Steam—Numerical Simulation
,”
Acta Polytechnica
,
52
(
6
), pp.
124
130
.
4.
Halama
,
J.
, and
Fort
,
J.
,
2013
, “
Numerical Simulation of Transonic Flow of Wet Steam in Nozzles and Turbines
,”
Computing
,
95
(
1
), pp.
303
318
. 10.1007/s00607-013-0292-6
5.
Grubel
,
M.
,
Starzmann
,
J.
,
Schatz
,
M.
,
Eberle
,
T.
,
Vogt
,
D. M.
, and
Sieverding
,
F.
,
2014
, “
Two-Phase Flow Modeling and Measurements in low-Pressure Turbines—Part 1: Numerical Validation of wet Steam Models and Turbine Modelling
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, GT2014-25244, pp.
1
13
.
6.
Schatz
,
M.
,
Eberle
,
T.
,
Grubel
,
M.
,
Starzmann
,
J.
,
Vogt
,
D. M.
, and
Surken
,
N.
,
2014
, “
Two-Phase Flow Modeling and Measurements in Low-Pressure Turbines—Part 2: Turbine Wetness Measurement and Comparison to CFD-Predictions
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, GT2014-25245, pp.
1
12
.
7.
Zhang
,
G.
,
Zhang
,
S.
,
Zhou
,
Z.
,
Li
,
Y.
,
Wang
,
L.
, and
Liu
,
C.
,
2017
, “
Numerical Study of Condensing Flow Based on the Modified Model
,”
Appl. Therm. Eng.
,
127
, pp.
1206
1214
. 10.1016/j.applthermaleng.2017.08.133
8.
Zhang
,
G.
,
Zhang
,
X.
,
Wang
,
D.
,
Jin
,
Z.
, and
Qin
,
X.
,
2019
, “
Performance Evaluation and Operation Optimization of the Steam Ejector Based on Modified Model
,”
Appl. Therm. Eng.
,
163
, p.
114388
. 10.1016/j.applthermaleng.2019.114388
9.
Liu
,
Y.
,
Du
,
X.
, and
Xhi
,
X.
,
2019
, “
Condensation Flow at the wet Steam Centrifugal Turbine Stage
,”
Proceedings Ins. Mech. Eng., Part A: Journal of Power and Energy
,
234
(
8
), pp.
1108
1121
. 10.1177/0957650919894823
10.
Elmekawy
,
A. M. N.
, and
Ali
,
M. E. H.
,
2020
, “
Computational Modeling of Non-equilibrium Condensing Steam Flows in Low-Pressure Steam Turbines
,”
Results in Engeering
,
5
, p.
100065
. 10.1016/j.rineng.2019.100065
11.
Afzalifar
,
A.
,
Turunen-Saaresti
,
T.
, and
Gronman
,
A.
,
2016
, “
Origin of Droplet Size Underprediction in Modeling of Low Pressure Nucleating Flows of Steam
,”
Int. J. Multiphase Flow
,
86
, pp.
86
98
. 10.1016/j.ijmultiphaseflow.2016.07.012
12.
Furusawa
,
T.
, and
Yamamoto
,
S.
,
2017
, “
Mathematical Modeling and Computation of High-Pressure Steam Condensation in a Transonic Flow
,”
J. Fluid Sci. Technol.
,
12
(
1
).
JFST0002-JFST0002
. 10.1299/jfst.2017jfst0002
13.
Halama
,
J.
,
Hric
,
V.
, and
Paty
,
M.
,
2017
, “
Numerical Solution of Transonic Flow of Steam With Non-equilibrium Phase Change Using Typical and Simplified Method
,”
Appl. Math. Comput.
,
319
, pp.
499
509
. 10.1016/j.amc.2017.05.044
14.
Kim
,
C. H.
,
Park
,
J. H.
,
Kim
,
D. I.
, and
Baek
,
J. H.
,
2017
, “
Numerical Analysis of Non-equilibriums Team Condensing Flows in Various Laval Nozzles and Cascades
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
172
183
. 10.1080/19942060.2016.1267043
15.
Min
,
D.
,
Kim
,
H.
,
Lee
,
H.
, and
Kim
,
C.
,
2015
, “
Efficient and Accurate Computations of Phase-Changing Flows in Thermal Vapor Compressor System
,”
The 2015 World Congress on Aeronautics, Nano, Bio, Robotics, and Energy (ANBRE15)
,
Incheon, South Korea
,
Aug. 25–28
.
16.
ANSYS FLUENT Thoery Guide, Release 14.0
,
2011
,
Ansys, Inc., Canonsburg, PA
.
17.
Young
,
J. B.
,
1992
, “
Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
569
579
. 10.1115/1.2929181
18.
Hill
,
P. G.
,
1966
, “
Condensation of Water Vapour During Supersonic Expansion in Nozzles
,”
J. Fluid Mech.
,
25
(
3
), pp.
593
620
. 10.1017/S0022112066000284
19.
Young
,
J. B.
,
1982
, “
The Spontaneous Condensation of Steam in Supersonic Nozzle
,”
Physico Chem. Hydrodyn.
,
3
(
1
), pp.
57
82
.
20.
Kim
,
C.
,
Park
,
J.
, and
Baek
,
J.
,
2018
, “
Effects of Relative Position Between a Stator and a Rotor on Steam Condensing Flow in Rotating Machinery
,”
Int. J. Fluid Mach. Syst.
,
11
(
1
), pp.
1
12
. 10.5293/IJFMS.2018.11.1.001
21.
Wagner
,
W.
, and
Kretzschmar
,
H. J.
,
2007
,
International Steam Tables–Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97: Tables, Algorithms, Diagrams, and CD-ROM Electronic Steam Tables–all of the Equations of IAPWS-IF97 Including a Complete Set of Supplementary Backward Equations for Fast Calculations of Heat Cycles, Boilers, and Steam Turbines
,
Springer Science & Business Media
.
22.
Moore
,
M. J.
, and
Sieverding
,
C. H.
,
1976
,
Two-Phase Steam Flow in Turbines and Separators: Theory, Instrumentation, Engineering
,
Hemisphere Publishing Corporation
,
Washington, DC
.
23.
Mei
,
Y.
, and
Guha
,
A.
,
2006
, “
Modification of the Upwind Schemes for the Computation of Condensing Two-Phase Flows
,”
Proceedings Ins. Mech. Eng., Part A: Journal of Power and Energy
,
220
(
7
), pp.
809
814
. 10.1243/09576509JPE146
24.
Moore
,
M. J.
,
Walters
,
P. T.
,
Crane
,
R. I.
, and
Davidson
,
B. J.
,
1973
, “
Predicting the Fog-Drop Size in Wet-Steam Turbines
,”
Wet Steam
,
4
, pp.
101
109
.
25.
Moses
,
C. A.
, and
Stein
,
G. D.
,
1978
, “
On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
J. Fluid. Eng.
,
100
(
3
), pp.
311
322
. 10.1115/1.3448672
26.
Starzmann
,
J.
,
Hughes
,
F. R.
,
Shuster
,
S.
,
White
,
A. J.
,
Halama
,
J.
,
Hric
,
V.
,
Kolovratnik
,
M.
,
Lee
,
H.
,
Sova
,
L.
,
Stastny
,
M.
,
Grubel
,
M.
,
Schatz
,
M.
,
Vogt
,
D. M.
,
Patel
,
Y.
,
Patel
,
G.
,
Turunen-Saaresti
,
T.
,
Gribin
,
V.
,
Tishchenko
,
V.
,
Gavrilov
,
I.
,
Kim
,
C.
,
Baek
,
J.
,
Wu
,
X.
,
Yang
,
J.
,
Dykas
,
S.
,
Wroblewski
,
W.
,
Yamamoto
,
S.
,
Feng
,
Z.
, and
Li
,
L.
,
2018
, “
Results of the International Wet Steam Modeling Project
,”
Part A: J. Power and Energy
,
232
(
5
), pp.
550
570
. 10.1177/0957650918758779
27.
Deck
,
S.
,
Duveau
,
P.
,
d'Espiney
,
P.
, and
Guillen
,
P.
,
2002
, “
Development and Application of Spalart–Allmaras One Equation Turbulence Model to Three-Dimensional Supersonic Complex Configurations
,”
Aerosp. Sci. Technol.
,
6
(
3
), pp.
171
183
. 10.1016/S1270-9638(02)01148-3
28.
Starzmann
,
J.
,
Hughes
,
F. R.
,
White
,
A. J.
,
Grübel
,
M.
, and
Vogt
,
D. M.
,
2017
, “
Numerical Investigation of Boundary Layers in Wet Steam Nozzles
,”
J. Eng. Gas Turb. Power
,
139
(
1
), p.
012606
. 10.1115/1.4034213
29.
Fakhari
,
K.
,
2006
, “
Development of a Two-Phase Eulerian/Lagrangian Algorithm for Condensing Steam Flow
,”
Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
, p.
597
.
30.
Sriram
,
A. T.
,
Mistry
,
H.
,
Moraga
,
F.
, and
Dey
,
S.
,
2011
, “
Numerical Sensitivity Studies on Nucleation of Droplets in Steam Turbine
,”
ASME 2011 Power Conference
,
Denver, CO
,
July 12–14
, pp.
559
565
.
31.
Cai
,
L.
,
He
,
M.
,
Huang
,
K. Z.
, and
Xiong
,
W.
,
2019
, “
Computational Fluid Dynamics Simulation of the Supersonic Steam Ejector Using Different Condensation Model
,”
Therm. Sci.
,
23
(
3
), pp.
1655
1661
. 10.2298/TSCI180723236C
32.
Gyarmathy
,
G.
,
1962
, “
Grundlagen Einer Theorie der Nassdampfturbine
,”
Doctoral dissertation
,
ETH Zurich
.
33.
Choi
,
B.
,
Shim
,
J.
,
Kim
,
C.
,
Park
,
J.
,
You
,
D.
, and
Baek
,
J.
,
2017
, “
Numerical Simulation of Homogeneous Condensing Wet-Steam Flow
,”
GPPS Shanghai 17
,
Shanghai, China
,
Oct. 30–Nov. 1
.
34.
Onischuk
,
A. A.
,
Purtov
,
P. A.
,
Baklanov
,
A. M.
,
Karasev
,
V. V.
, and
Vosel
,
S. V.
,
2006
, “
Evaluation of Surface Tension and Tolman Length as a Function of Droplet Radius From Experimental Nucleation Rate and Supersaturation Ratio: Metal Vapor Homogeneous Nucleation
,”
J. Chem. Phys.
,
124
(
1
), p.
014506
. 10.1063/1.2140268
35.
Chapline
,
R. A.
,
2009
,
Thermal Power Plants
,
Encylopedia of Life Support Systems
,
Oxford, UK
.
36.
Rathore
,
M. M.
,
2010
,
Thermal Engineering
,
Tata McGraw-Hill Education
,
New Delhi, India
.
You do not currently have access to this content.