Abstract

The friction factor, thermal performance, and heat transfer are experimentally analyzed for reduced-graphene oxide/cobalt oxide (rGO/CO3O4) hybrid nanomaterial-based nanofluid circulating in a plain tube with and without twisted tape inserts having different pitches. The reduced-graphene oxide/cobalt oxide (rGO/CO3O4) hybrid nanomaterial is prepared using in situ/chemical reduction technique and then characterized with transmission electron microscope, X-ray diffraction, and magnetometry. The experiments were conducted with different values of particle loading (0.05%, 0.1%, and 0.2%) and Reynolds number (2000–2,020,000). Three twisted tape inserts of helixes 285 mm, 190 mm, and 95 mm were used. The nanofluids was produced from the addition of the hybrid nanomaterial to water yield an increase, as compared to the basefluid (water), of the Nusselt number, which is further enhanced by increasing the nanoparticle loading. Therefore, when compared to water, the Nusselt number is enhanced by 25.65%, with no twisted tape and by 79.16% with twisted tape with helix of 95 mm for the nanofluid of 0.2% volume concentration. However, when compared to water, there is a slight friction factor penalty with the 0.2% particle loading of 1.11-times and 1.49-times for the plain tube and for the 95-mm twisted tape helix, respectively. The thermal performance factor gets enhanced by increasing the nanoparticles concentration of the hybrid nanofluids with or without twisted tape inserts, and it is always higher than one. Based on the experimental data, regression equations were developed for the Nusselt number and friction factor.

References

1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
,
San Francisco, CA
,
Nov. 12–17
, pp.
1
6
.
2.
Pang
,
C.
,
Jung
,
J.-Y.
,
Lee
,
J. W.
, and
Kang
,
Y. T.
,
2012
, “
Thermal Conductivity Measurement of Methanol-Based Nanofluids With Al2O3 and SiO2 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5597
5602
. 10.1016/j.ijheatmasstransfer.2012.05.048
3.
Lee
,
J. H.
,
Lee
,
S. H.
,
Choi
,
C. J.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2010
, “
A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids
,”
Int. J. Micro-Nano Scale Transp.
,
1
(
4
), pp.
269
322
. 10.1260/1759-3093.1.4.269
4.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Galanis
,
N.
,
Roy
,
G.
,
Maré
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2008
, “
Viscosity Data for Al2O3–Water Nanofluid-Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable?
,”
Int. J. Thermal Sci.
,
47
(
2
), pp.
103
111
. 10.1016/j.ijthermalsci.2007.01.033
5.
Hemmat Esfe
,
M.
,
Saedodin
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
Thermal Conductivity of Al2O3/Water Nanofluids, Measurement, Correlation, Sensitivity Analysis, and Comparisons With Literature Reports
,”
J. Therm Anal Calorim.
,
117
(
2
), pp.
675
681
. 10.1007/s10973-014-3771-x
6.
Abbasian Arani
,
A. A.
, and
Amani
,
J.
,
2012
, “
Experimental Study on the Effect of TiO2–Water Nanofluid on Heat Transfer and Pressure Drop
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
107
115
. 10.1016/j.expthermflusci.2012.04.017
7.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
An Experimental Investigation Into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids
,”
J. Nanopart. Res.
,
12
(
3
), pp.
1015
1031
. 10.1007/s11051-009-9658-2
8.
Hwang
,
Y.
,
Lee
,
J. K.
,
Lee
,
C. H.
,
Jung
,
Y. M.
,
Cheong
,
S. I.
,
Lee
,
C. G.
,
Ku
,
B. C.
, and
Jang
,
S. P.
,
2007
, “
Stability and Thermal Conductivity Characteristics of Nanofluids
,”
Thermochim. Acta
,
455
(
1–2
), pp.
70
74
. 10.1016/j.tca.2006.11.036
9.
Ozerinc
,
S.
,
Kakac
,
S.
, and
Yazıcıoğlu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State of the Art Review
,”
Microfluid Nanofluid
,
8
(
2
), pp.
145
170
. 10.1007/s10404-009-0524-4
10.
Said
,
Z.
,
Abdelkareem
,
M. A.
,
Rezk
,
H.
, and
Nassef
,
A. M.
,
2019
, “
Fuzzy Modeling and Optimization for Experimental Thermophysical Properties of Water and Ethylene Glycol Mixture for Al2O3 and TiO2 Based Nanofluids
,”
Powder Technol.
,
353
, pp.
345
358
. 10.1016/j.powtec.2019.05.036
11.
Pei
,
S.
, and
Cheng
,
H.-M.
,
2012
, “
The Reduction of Graphene Oxide
,”
Carbon
,
50
(
9
), pp.
3210
3228
. 10.1016/j.carbon.2011.11.010
12.
Tanaka
,
U.
,
Sogabe
,
T.
,
Sakagoshi
,
H.
,
Ito
,
M.
, and
Tojo
,
T.
,
2001
, “
Anode Property of Boron-Doped Graphite Materials for Rechargeable Lithium-Ion Batteries
,”
Carbon
,
39
(
6
), p.
931
. 10.1016/S0008-6223(00)00211-6
13.
Ortmann
,
F.
,
Schmidt
,
W. G.
, and
Bechstedt
,
F.
,
2005
, “
Attracted by Long-Range Electron Correlation: Adenine on Graphite
,”
Phys. Rev. Lett.
,
95
(
18
), p.
186101
. 10.1103/PhysRevLett.95.186101
14.
Said
,
Z.
,
Abdelkareem
,
M. A.
,
Rezk
,
H.
,
Nassef
,
A. M.
, and
Atwany
,
H. Z.
,
2020
, “
Stability, Thermophysical and Electrical Properties of Synthesized Carbon Nanofiber and Reduced-Graphene Oxide-Based Nanofluids and Their Hybrid Along With Fuzzy Modeling Approach
,”
Powder Technol.
,
364
, pp.
795
809
. 10.1016/j.powtec.2020.02.026
15.
Baby
,
T. T.
, and
Ramaprabhu
,
S.
,
2011
, “
Enhanced Convective Heat Transfer Using Graphene Dispersed Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
289
), pp.
1
9
.
16.
Syam Sundar
,
L.
,
Singh
,
M. K.
,
Venkata Ramana
,
E.
,
Singh
,
B. K.
,
Gracio
,
J.
, and
Sousa
,
A. C. M.
,
2014
, “
Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids
,”
Sci. Rep.
,
4
(
4039
), pp.
1
14
.
17.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
Effect of Al2O3-Cu/Water Hybrid Nanofluid in Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
54
60
. 10.1016/j.expthermflusci.2011.11.007
18.
Syam Sundar
,
L.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2014
, “
Enhanced Heat Transfer and Friction Factor Of MWCNT-Fe3O4/Water Hybrid Nanofluids
,”
Int. Comm. Heat Mass Transfer
,
52
, pp.
73
83
. 10.1016/j.icheatmasstransfer.2014.01.012
19.
Madhesh
,
D.
,
Parameshwaran
,
R.
, and
Kalaiselvam
,
S.
,
2014
, “
Experimental Investigation on Convective Heat Transfer and Rheological Characteristics of Cu-TiO2 Hybrid Nanofluids
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
104
115
. 10.1016/j.expthermflusci.2013.08.026
20.
Safi
,
M. A.
,
Ghozatloo
,
A.
,
Shariaty-Niassar
,
M.
, and
Hamidi
,
A. A.
,
2014
, “
Preparation of MWNT/TiO2 Nanofluids and Study of Its Thermal Conductivity and Stability
,”
Iran. J. Chem. Eng.
,
11
(
1
), pp.
1
7
. 10.1007/s13738-013-0259-8
21.
Harandi
,
S. S.
,
Karimipour
,
A.
,
Afrand
,
M.
,
Akbari
,
M.
, and
D'Orazio
,
A.
,
2016
, “
An Experimental Study on Thermal Conductivity of f-MMCNTs–Fe3O4/EG Hybrid Nanofluid: Effects of Temperature and Concentration
,”
Int. Comm. Heat Mass Transf.
,
76
, pp.
171
177
. 10.1016/j.icheatmasstransfer.2016.05.029
22.
Qing
,
S. H.
,
Rashmi
,
W.
,
Khalid
,
M.
,
Gupta
,
T. C. S. M.
,
Nabipoor
,
M.
, and
Hajibeigy
,
M. T.
,
2017
, “
Thermal Conductivity and Electrical Properties of Hybrid SiO2-Graphene Naphthenic Mineral Oil Nanofluid as Potential Transformer Oil
,”
Mater. Res. Express
,
4
(
1
), p.
015504
. 10.1088/2053-1591/aa550e
23.
Jyothirmayee Aravind
,
S. S.
, and
Ramaprabhu
,
S.
,
2012
, “
Graphene Wrapped Multiwalled Carbon Nanotubes Dispersed Nanofluids for Heat Transfer Applications
,”
J. Appl. Phys.
,
112
(
124304
), pp.
1
9
.
24.
Baby
,
T. T.
, and
Ramaprabhu
,
S.
,
2011
, “
Synthesis and Nanofluid Application of Silver Nanoparticles Decorated Graphene
,”
J. Mater. Chem.
,
21
(
26
), pp.
9702
9709
. 10.1039/c0jm04106h
25.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
S.
,
Kumar
,
S.
,
Dilbaghi
,
N.
, and
Said
,
Z.
,
2018
, “
Up to Date Review on the Synthesis and Thermophysical Properties of Hybrid Nanofluids
,”
J. Cleaner Prod.
,
190
, pp.
169
192
. 10.1016/j.jclepro.2018.04.146
26.
Su
,
Q.
,
Yuan
,
W.
,
Yao
,
L.
,
Wu
,
Y.
,
Zhang
,
J.
, and
Du
,
G.
,
2015
, “
Microwave-Assisted Synthesis of Co3O4–Graphene Sheet-on-Sheet Nanocomposites and Electrochemical Performances for Lithium Ion Batteries
,”
Mater. Res. Bull.
,
72
, pp.
43
49
. 10.1016/j.materresbull.2015.07.035
27.
Liang
,
Y.
,
Li
,
Y.
,
Wang
,
H.
,
Zhou
,
J.
,
Wang
,
J.
,
Regier
,
T.
, and
Dai
,
H.
,
2011
, “
Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction
,”
Nat. Mater.
,
10
(
10
), pp.
780
786
. 10.1038/nmat3087
28.
Shi
,
P.
,
Dai
,
X.
,
Zheng
,
H.
,
Li
,
D.
,
Yao
,
W.
, and
Hu
,
C.
,
2014
, “
Synergistic Catalysis Of Co3O4 and Graphene Oxide on Co3O4/GO Catalysts for Degradation of Orange II in Water by Advanced Oxidation Technology Based on Sulfate Radicals
,”
Chem. Eng. J.
,
240
, pp.
264
270
. 10.1016/j.cej.2013.11.089
29.
Xiang
,
C.
,
Li
,
M.
,
Zhi
,
M.
,
Manivannan
,
A.
, and
Wu
,
N.
,
2013
, “
A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode
,”
J. Power Sources
,
226
, pp.
65
70
. 10.1016/j.jpowsour.2012.10.064
30.
Syam Sundar
,
L.
,
Singh
,
M. K.
,
Ferro
,
M. C.
, and
Sousa
,
A. C. M.
,
2017
, “
Experimental Investigation of the Thermal Transport Properties of Graphene Oxide/Co3O4 Hybrid Nanofluids
,”
Int. Comm. Heat Mass Transfer
,
84
, pp.
1
10
. 10.1016/j.icheatmasstransfer.2017.03.001
31.
Syam Sundar
,
L.
, and
Sharma
,
K. V.
,
2010
, “
Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1409
1416
. 10.1016/j.ijheatmasstransfer.2009.12.016
32.
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2011
, “
Enhancement of Heat Transfer Using CuO/Water Nanofluid and Twisted Tape With Alternate Axis
,”
Int. Comm. Heat Mass Transfer
,
38
(
6
), pp.
742
748
. 10.1016/j.icheatmasstransfer.2011.03.011
33.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
890
896
. 10.1115/1.2911384
34.
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2012
, “
Heat Transfer Enhancement by Using CuO/Water Nanofluid in Corrugated Tube Equipped With Twisted Tape
,”
Int. Commun. Heat Mass Transfer
,
39
(
2
), pp.
251
257
. 10.1016/j.icheatmasstransfer.2011.11.010
35.
Syam Sundar
,
L.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2019
, “
Experimental Study on Heat Transfer and Friction Factor of Nanodiamond-Nickel (ND-Ni) Nanocomposite Nanofluids Flow in a Tube With Twisted Tape Inserts
,”
J. Nanofluids
,
8
, pp.
1
10
.
36.
Hummers
,
W. S.
, and
Offeman
,
R. E.
,
1958
, “
Preparation of Graphitic Oxide
,”
J. Am. Chem. Soc.
,
80
(
6
), p.
1339
. 10.1021/ja01539a017
37.
Lai
,
L.
,
Zhu
,
J.
,
Li
,
Z.
,
Yu
,
D. Y. W.
,
Jiang
,
S.
,
Cai
,
X.
,
Yan
,
Q.
,
Lam
,
Y. M.
,
Shen
,
Z.
, and
Lin
,
J.
,
2014
, “
Co3O4/Nitrogen Modified Graphene Electrode as Li-ion Battery Anode With High Reversible Capacity and Improved Initial Cycle Performance
,”
Nano Energy
,
3
, pp.
134
143
. 10.1016/j.nanoen.2013.05.014
38.
Zou
,
Y.
, and
Wang
,
Y.
,
2011
, “
Sn@CNT Nanostructures Rooted in Graphene With High and Fast Li-Storage Capacities
,”
ACS Nano
,
5
(
10
), pp.
8108
8114
. 10.1021/nn2027159
39.
Mohandes
,
F.
,
Davar
,
F.
, and
Salavati-Niasari
,
M.
, “
Preparation of Co3O4 Nanoparticles by Nonhydrolytic Thermolysis of [Co(Pht)(H2O)]n Polymers
,”
J. Magn. Magn. Mater.
,
322
(
7
), pp.
872
877
. 10.1016/j.jmmm.2009.11.019
40.
Dutta
,
P.
,
Seehra
,
M. S.
,
Thota
,
S.
, and
Kumar
,
J.
,
2008
, “
A Comparative Study of the Magnetic Properties of Bulk and Nanocrystalline Co3O4
,”
J. Phys.: Condens. Matter.
,
20
(
015218
), pp.
1
8
.
41.
Yang
,
H. T.
,
Su
,
Y. K.
,
Shen
,
C. M.
,
Yang
,
T. Z.
, and
Gao
,
H. J.
,
2004
, “
Synthesis and Magnetic Properties of -Cobalt Nanoparticles
,”
Surf. Interface Anal.
,
36
(
2
), pp.
155
160
. 10.1002/sia.1675
42.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
210
216
. 10.1016/j.expthermflusci.2009.10.022
43.
Avsec
,
J.
, and
Oblak
,
M.
,
2007
, “
The Calculation of Thermal Conductivity, Viscosity and Thermodynamic Properties for Nanofluids on the Basis of Statistical Nanomechanics
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4331
4341
. 10.1016/j.ijheatmasstransfer.2007.01.064
44.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Misra
,
D.
, and
Das
,
D. K.
,
2007
, “
Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture
,”
Exp. Therm. Fluid Sci.
,
323
, pp.
97
402
.
45.
Fedele
,
L.
,
Colla
,
L.
, and
Bobbo
,
S.
,
2012
, “
Viscosity and Thermal Conductivity Measurements of Water-Based Nanofluids Containing Titanium Oxide Nanoparticles
,”
Int. J. Refrigeration
,
5
(
5
), pp.
1359
1366
. 10.1016/j.ijrefrig.2012.03.012
46.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat And Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
47.
Notter
,
R. H.
, and
Rouse
,
M. W.
,
1972
, “
A Solution to the Graetz Problem—III. Fully Developed Region Heat Transfer Rates
,”
Chem. Eng. Sci.
,
27
(
11
), pp.
2073
2093
. 10.1016/0009-2509(72)87065-9
48.
Corcione
,
M.
,
Cianfrini
,
M.
, and
Quintino
,
A.
,
2012
, “
Heat Transfer of Nanofluids in Turbulent Pipe Flow
,”
Int. J. Thermal Sci.
,
56
, pp.
58
69
. 10.1016/j.ijthermalsci.2012.01.009
49.
Sarma
,
P. K.
,
Subramanyam
,
T.
,
Kishore
,
P. S.
,
Dharma Rao
,
V.
, and
Kakac
,
S.
,
2002
, “
A New Method to Predict Convective Heat Transfer in a Tube With Twisted Tape Inserts for Turbulent flow
,”
Int. J. Therm. Sci.
,
41
(
10
), pp.
955
960
. 10.1016/S1290-0729(02)01388-1
50.
Blasius
,
H.
,
1908
, “
The Boundary Layers in Fluids With Little Friction
,”
Z. Math. Phys.
,
56
, pp.
1
37
.
51.
Petukhov
,
B. S.
,
1970
, “Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties,”
Advances in Heat Transfer
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds.,
Academic Press
,
NY
, pp.
504
564
.
52.
Bergles
,
A. E.
,
Blumenkrantz
,
A. R.
, and
Taborek
,
J.
,
1974
, “
Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces
,”
ASME J. Heat Transfer
,
2
, pp.
239
243
.
53.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.