Abstract

In the present communication, a performance investigation of a double-slope solar still augmented with parallel evacuated tubes under forced mode is carried out for a modified geometry. A comprehensive mathematical model is used for the numerical simulation using the experimental data and incorporating the effect of variable flowrate, water depth, and the number of tubes. An optimum flowrate range ∼0.006–0.007 kg/s/tube is found irrespective of the number of tubes and basin water depth to extract optimal energy. The flowrate is validated with other experiments, carried out by various authors. At optimal flowrate with ten tubes and 0.005 m basin water depth, the system yields 6.644 kg, while overall energetic and exergetic efficiencies are observed as ∼33.8% and 4.9%, respectively. With an increase in the tubes as 20 and 30, the respective yields are found to be increased by ∼2.64% and ∼6.62% for nearly the same collector output temperature attainable (≈98.5°C), while the energy and exergy efficiencies decreased significantly by ∼24.6% and ∼38.6%, compared with ten tubes arrangement. Daily yield and overall exergy efficiency are increased by 13.3% and 19.3%, respectively, using a diffused reflector.

References

1.
Richey
,
A. S.
,
Thomas
,
B. F.
,
Lo
,
M. H.
,
Reager
,
J. T.
,
Famiglietti
,
J. S.
,
Voss
,
K.
,
Swenson
,
S.
, and
Rodell
,
M.
,
2015
, “
Quantifying Renewable Groundwater Stress With GRACE
,”
Water Resour. Res.
,
51
(
7
), pp.
5217
5238
. 10.1002/2015WR017349
2.
Fiorenza
,
G.
,
Sharma
,
V. K.
, and
Braccio
,
G.
,
2003
, “
Techno-Economic Evaluation of a Solar Powered Water Desalination Plant
,”
Energy Convers. Manage.
,
44
(
14
), pp.
2217
2240
. 10.1016/S0196-8904(02)00247-9
3.
Pugsley
,
A.
,
Zacharopoulos
,
A.
,
Mondol
,
J. D.
, and
Smyth
,
M.
,
2016
, “
Global Applicability of Solar Desalination
,”
Renewable Energy
,
88
, pp.
200
219
. 10.1016/j.renene.2015.11.017
4.
Tiwari
,
G. N.
,
Singh
,
H. N.
, and
Tripathi
,
R.
,
2003
, “
Present Status of Solar Distillation
,”
Sol. Energy
,
75
(
5
), pp.
367
373
. 10.1016/j.solener.2003.07.005
5.
Mathioulakis
,
E.
,
Belessiotis
,
V.
, and
Delyannis
,
E.
,
2007
, “
Desalination by Using Alternative Energy: Review and State-of-the-Art
,”
Desalination
,
203
(
1
), pp.
346
365
. 10.1016/j.desal.2006.03.531
6.
Sampathkumar
,
K.
,
Arjunan
,
T. V.
,
Pitchandi
,
P.
, and
Senthilkumar
,
P.
,
2010
, “
Active Solar Distillation—A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
14
(
6
), pp.
1503
1526
. 10.1016/j.rser.2010.01.023
7.
Delyannis
,
E.
,
2003
, “
Historic Back Ground of Desalination and Renewable Energies
,”
Sol. Energy
,
75
(
5
), pp.
357
366
. 10.1016/j.solener.2003.08.002
8.
Cooper
,
P. I.
,
1972
, “
The Maximum Efficiency of Single-Effect Solar Stills
,”
Sol. Energy
,
15
(
3
), pp.
205
217
. 10.1016/0038-092X(73)90085-6
9.
Dev
,
R.
,
Singh
,
H. N.
, and
Tiwari
,
G. N.
,
2011
, “
Characteristic Equation of Double Slope Passive Solar Still
,”
Desalination
,
267
(
2
), pp.
261
266
. 10.1016/j.desal.2010.09.037
10.
Tiwari
,
G. N.
,
Singh
,
S. K.
, and
Bhatnagar
,
V. P.
,
1993
, “
Analytical Thermal Modeling of Multi-Basin Solar Still
,”
Energy Convers. Manage.
,
34
(
12
), pp.
1261
1266
. 10.1016/0196-8904(93)90122-Q
11.
Rubio-Cerda
,
E.
,
Porta-Gandara
,
M. A.
, and
Fernandez-Zayas
,
J. L.
,
2002
, “
Thermal Performance of the Condensing Covers in a Triangular Solar Still
,”
Renewable Energy
,
27
(
2
), pp.
301
308
. 10.1016/S0960-1481(01)00196-3
12.
Fath
,
H. E. S.
,
El-Samanoudy
,
M.
,
Fahmy
,
K.
, and
Hassabou
,
A.
,
2003
, “
Thermal-Economic Analysis and Comparison Between Pyramid Shaped and Single-Slope Solar Still Configurations
,”
Desalination
,
159
(
1
), pp.
69
79
. 10.1016/S0011-9164(03)90046-4
13.
Badran
,
A. A.
,
2001
, “
Inverted Trickle Solar Still: Effect of Heat Recovery
,”
Desalination
,
133
(
2
), pp.
167
173
. 10.1016/S0011-9164(01)00095-9
14.
Abu-Arabi
,
M.
, and
Zurigat
,
Y.
,
2005
, “
Year-Round Comparative Study of Three Types of Solar Distillation Units
,”
Desalination
,
172
(
2
), pp.
137
143
. 10.1016/j.desal.2004.05.011
15.
Yamaguchi
,
Y.
, and
Sato
,
H.
,
2003
, “
Development of Small-Scale Multi-Effect Solar Still
,”
ASME International Solar Energy Conference
,
Kohala Coast, HI
,
Mar. 15–18
, pp.
167
173
.
16.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2006
, “
Theoretical Analysis of a Basin Type Solar Still With Internal and External Reflectors
,”
Desalination
,
197
(
1–3
), pp.
205
216
. 10.1016/j.desal.2006.01.017
17.
Ismail
,
B. I.
,
2009
, “
Design and Performance of a Transportable Hemispherical Solar Still
,”
Renewable Energy
,
34
(
1
), pp.
145
150
. 10.1016/j.renene.2008.03.013
18.
Cappelletti
,
G. M.
,
2002
, “
An Experiment With a Plastic Solar Still
,”
Desalination
,
142
(
3
), pp.
221
227
. 10.1016/S0011-9164(02)00203-5
19.
Boukar
,
M.
, and
Harmim
,
A.
,
2001
, “
Effect of Climatic Conditions on the Performance of a Simple Basin Solar Still: A Comparative Study
,”
Desalination
,
137
(
1–3
), pp.
15
22
. 10.1016/S0011-9164(01)00199-0
20.
Al-Hinai
,
H.
,
Al-Nassri
,
M. S.
, and
Jubran
,
B. A.
,
2002
, “
Effect of Climatic, Design and Operational Parameters on the Yield of a Simple Solar Still
,”
Energy Convers. Manage.
,
43
(
13
), pp.
1639
1650
. 10.1016/S0196-8904(01)00120-0
21.
Panchal
,
H.
, and
Pravin
,
S.
,
2012
, “
Effect of Varying Glass Cover Thickness on Performance of Solar Still: In a Winter Climate Conditions
,”
Int. J. Renewable Energy Res.
,
1
(
4
), pp.
212
223
.
22.
Garg
,
M. M.
, and
Mann
,
H. S.
,
1976
, “
Effect of Climatic, Operational and Design Parameters on the Year-Round Performance of Single Slope and Double Slope Solar Stills Under Indian Arid Condition
,”
Sol. Energy
,
18
(
2
), pp.
159
163
. 10.1016/0038-092X(76)90052-9
23.
Dwivedi
,
V. K.
, and
Tiwari
,
G. N.
,
2008
, “
Annual Energy and Exergy Analysis of Single and Double Slope Solar Stills
,”
Trends Appl. Sci. Res.
,
3
(
3
), pp.
225
241
. 10.3923/tasr.2008.225.241
24.
Rai
,
S. N.
, and
Tiwari
,
G. N.
,
1983
, “
Single Basin Solar Still Coupled With Flat Plate Collector
,”
Energy Convers. Manage.
,
23
(
3
), pp.
145
149
. 10.1016/0196-8904(83)90057-2
25.
Tiris
,
C.
,
Tiris
,
M.
,
Erdalli
,
Y.
, and
Sohmen
,
M.
,
1998
, “
Experimental Studies on a Solar Still Coupled With a Flat Plate Collector and a Single Basin Still
,”
Energy Convers. Manage.
,
39
(
8
), pp.
853
856
. 10.1016/S0196-8904(97)83469-3
26.
Badran
,
O. O.
, and
Al-Tahainesh
,
H. A.
,
2005
, “
The Effect of Coupling Flat-Plate Collector on the Solar Still Productivity
,”
Desalination
,
183
(
1–3
), pp.
137
142
. 10.1016/j.desal.2005.02.046
27.
Abdel-Rehim
,
Z. S.
, and
Lasheen
,
A.
,
2007
, “
Experimental and Theoretical Study of a Solar Desalination System Located in Cairo, Egypt
,”
Desalination
,
217
(
1–3
), pp.
52
64
. 10.1016/j.desal.2007.01.012
28.
Tiwari
,
G. N.
,
Dimri
,
V.
,
Singh
,
U.
,
Chel
,
A.
, and
Sarkar
,
B.
,
2007
, “
Comparative Thermal Performance Evaluation of an Active Solar Distillation System
,”
Int. J. Energy Res.
,
31
(
15
), pp.
1465
1482
. 10.1002/er.1314
29.
Kumar
,
S.
, and
Tiwari
,
A.
,
2010
, “
Design, Fabrication and Performance of a Hybrid Photovoltaic/Thermal (PV/T) Active Solar Still
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1219
1229
. 10.1016/j.enconman.2009.12.033
30.
Dwivedi
,
V. K.
, and
Tiwari
,
G. N.
,
2010
, “
Experimental Validation of Thermal Model of a Double Slope Active Solar Still Under Natural Circulation Mode
,”
Desalination
,
250
(
1
), pp.
49
55
. 10.1016/j.desal.2009.06.060
31.
Etawil
,
M. A.
, and
Omara
,
Z. M.
,
2014
, “
Enhancing the Solar Still Performance Using Solar Photovoltaic, Flat Plate Collector and Hot Air
,”
Desalination
,
349
, pp.
1
9
. 10.1016/j.desal.2014.06.021
32.
Morrison
,
G. L.
,
Budihardjoa
,
I.
, and
Behnia
,
M.
,
2005
, “
Measurement and Simulation of Flow Rate in a Water-in-Glass Evacuated Tube Solar Water Heater
,”
Sol. Energy
,
78
(
2
), pp.
257
267
. 10.1016/j.solener.2004.09.005
33.
El-Nashar
,
A.
,
2009
, “
Seasonal Effect of Dust Deposition on a Field of Evacuated Tube Collectors on the Performance of a Solar Desalination Plant
,”
Desalination
,
239
(
1–3
), pp.
66
81
. 10.1016/j.desal.2008.03.007
34.
Panchal
,
H. N.
,
Doshi
,
M.
,
Thakor
,
K.
, and
Patel
,
A.
,
2011
, “
Experimental Investigation on Coupling Evacuated Glass Tube Collector on Single Slope Single Basin Solar Still Productivity
,”
J. Mech. Eng.
,
2
(
11
), pp.
1
9
.
35.
Dev
,
R.
, and
Tiwari
,
G. N.
,
2012
, “
Annual Performance of Evacuated Tubular Collector Integrated Solar Still
,”
Desalin. Water Treat.
,
41
(
1–3
), pp.
204
223
. 10.1080/19443994.2012.664715
36.
Singh
,
R. V.
,
Kumar
,
S.
,
Hasan
,
M. M.
,
Khan
,
M. E.
, and
Tiwari
,
G. N.
,
2013
, “
Performance of a Solar Still Integrated With Evacuated Tube Collector in Natural Mode
,”
Desalination
,
318
, pp.
25
33
. 10.1016/j.desal.2013.03.012
37.
Sampathkumar
,
K.
,
Arjun
,
T. V.
, and
Senthikumar
,
P.
,
2013
, “
The Experimental Investigation of a Solar Still Coupled With an Evacuated Tube Collector
,”
Energy Source Part A
,
35
(
3
), pp.
261
270
. 10.1080/15567036.2010.511426
38.
Panchal
,
H. N.
, and
Awasthi
,
A.
,
2016
, “
Theoretical Modelling and Experimental Analysis of Solar Still Integrated With Evacuated Tubes
,”
Heat Mass Transfer
,
53
(
6
), pp.
1943
1955
. 10.1007/s00231-016-1953-8
39.
Yari
,
M.
,
Mazareh
,
A. E.
, and
Mehr
,
A. S.
,
2016
, “
A Novel Cogeneration System for Sustainable Water and Power Production by Integration of a Solar Still and PV Module
,”
Desalination
,
398
, pp.
1
11
. 10.1016/j.desal.2016.07.004
40.
Sato
,
A. I.
,
Scalon
,
V. L.
, and
Padilha
,
A.
,
2012
, “
Numerical Analysis of a Modified Evacuated Tubes Solar Collector
,”
International Conference on Renewable Energies and Power Quality (ICREPQ’12)
,
Santiago de Compostela, Spain
,
Mar. 28–30
, pp.
384
389
.
41.
Budihardjo
,
I.
,
Morrison
,
G. L.
, and
Behnia
,
M.
,
2007
, “
Natural Circulation Flow Through Water-in-Glass Evacuated Tube Solar Collector
,”
Sol. Energy
,
81
(
12
), pp.
1460
1472
. 10.1016/j.solener.2007.03.002
42.
Jowzi
,
M.
,
Veysi
,
F.
, and
Sadeghi
,
G.
,
2019
, “
Experimental and Numerical Investigations on the Thermal Performance of a Modified Evacuated Tube Solar Collector: Effect of the Bypass Tube
,”
Sol. Energy
,
183
, pp.
725
737
. 10.1016/j.solener.2019.03.063
43.
Shah
,
L. J.
, and
Furbo
,
S.
,
2004
, “
Vertical Evacuated Tubular-Collectors Utilizing Solar Radiation From All Directions
,”
Appl. Energy
,
78
(
4
), pp.
371
395
. 10.1016/j.apenergy.2003.10.004
44.
Glembin
,
J.
,
Rockendorf
,
G.
, and
Scheuren
,
J.
,
2010
, “
Internal Thermal Coupling in Direct-Flow Coaxial Vacuum Tube Collectors
,”
Sol. Energy
,
84
(
7
), pp.
1137
1146
. 10.1016/j.solener.2010.03.018
45.
Louise
,
J. S.
, and
Simon
,
F.
,
2007
, “
Theoretical Flow Investigations of an All Glass Evacuated Tubular Collector
,”
Sol. Energy
,
81
(
6
), pp.
822
828
. 10.1016/j.solener.2006.09.007
46.
Kumar
,
S.
,
Dubey
,
A.
, and
Tiwari
,
G. N.
,
2014
, “
A Solar Still Augmented With an Evacuated Tube Collector in Forced Mode
,”
Desalination
,
347
, pp.
15
24
. 10.1016/j.desal.2014.05.019
47.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2017
, “
Performance Analysis of Basin Type Solar Stills Integrated With N Identical Photovoltaic Thermal (PVT) Compound Parabolic Concentrator (CPC) Collectors: A Comparative Study
,”
Sol. Energy
,
142
, pp.
144
158
. 10.1016/j.solener.2016.11.047
48.
Sukhatme
,
S. P.
,
1984
,
Solar Energy: Principal of Thermal Energy Collection
,
Tata McGraw-Hill
,
New Delhi
.
49.
Furbo
,
S.
, and
Shah
,
L. J.
,
1996
, “
Optimum Solar Collector Fluid Flow Rates
,”
Euro Sun’96. Internationals Sonnenforu; Proceedings
,
DGS Sonnenenergie Verlags
, pp.
189
193
.
50.
Singh
,
G.
,
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2011
, “
Design, Fabrication and Performance Evaluation of a Hybrid Photovoltaic Thermal (PVT) Double Slope Active Solar Still
,”
Desalination
,
277
(
1–3
), pp.
399
406
. 10.1016/j.desal.2011.04.064
51.
Ranjan
,
K. R.
, and
Kaushik
,
S. C.
,
2014
, “
Exergy Analysis of the Active Solar Distillation Systems Integrated With Solar Ponds
,”
Clean Technol. Environ. Policy
,
16
(
5
), pp.
791
805
. 10.1007/s10098-013-0669-4
52.
Kumar
,
S.
,
2013
, “
Thermal–Economic Analysis of a Hybrid Photovoltaic Thermal (PVT) Active Solar Distillation System: Role of Carbon Credit
,”
Urban Clim.
,
5
, pp.
112
124
. 10.1016/j.uclim.2013.07.001
53.
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Estimation of Internal Heat Transfer Coefficients of a Hybrid (PV/T) Active Solar Still
,”
Sol. Energy
,
83
(
9
), pp.
1656
1667
. 10.1016/j.solener.2009.06.002
54.
Sethi
,
A. K.
, and
Dwivedi
,
V. K.
,
2013
, “
Exergy Analysis of Double Slope Active Solar Still Under Forced Circulation Mode
,”
Desalin. Water Treat.
,
51
(
40–42
), pp.
7394
7400
. 10.1080/19443994.2013.777945
55.
Ghoneim
,
A. A.
,
2017
, “
Optimization of Evacuated Tube Collector Parameters for Solar Industrial Process Heat
,”
Int. J. Energy Environ. Res.
,
5
(
2
), pp.
55
73
.
You do not currently have access to this content.