Abstract

The present work reports a comparative analysis of natural convection heat transfer from a thick hollow vertical cylinder either placed on the ground or suspended in the air. The numerical simulations have been performed by varying the cylinder length to its outer diameter (L/Do) in the range of 0.2–20, the thickness ratio (Di/Do) in a range of 0.5–0.9, and Rayleigh number (Ra) from 104 to 108. The flow and heat transfer characteristics have been delineated precisely with the presentation of the thermal plume and flow field in the vicinity of the cylinder. The variation of average Nusselt number (Nu), local Nu, and contribution to total heat loss from different surfaces with the pertinent parameters have been elucidated graphically. The average Nu is always more for the cylinder in the air compared with the case when it is on the ground. However, the difference between the Nu for these two cases diminishes, as the L/Do increases. It has also been found that the contribution to total heat loss from the inner surface of the hollow cylinder suspended in air increases with L/Do, attains a peak, and decreases sharply. Cooling time curves for the cylinder placed in air or on the ground have been described precisely. Finally, a correlation for the average Nusselt number as a function of all the pertinent parameters has been proposed that can be useful for industrial and academic purposes.

References

1.
Liu
,
H.
,
Todreas
,
N. E.
, and
Driscoll
,
M. J.
,
2000
, “
Experimental Investigation of a Passive Cooling Unit for Nuclear Plant Containment
,”
Nucl. Eng. Des.
,
199
(
3
), pp.
243
255
. 10.1016/S0029-5493(00)00229-6
2.
Dimmick
,
G. R.
,
Chatoorgoon
,
V.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2002
, “
Natural-Convection Studies for Advanced CANDU Reactor Concepts
,”
Nucl. Eng. Des.
,
215
, pp.
27
38
. 10.1016/s0029-5493(02)00039-0
3.
Joo
,
Y.
, and
Kim
,
S. J.
,
2016
, “
Thermal Optimization of Vertically Oriented, Internally Finned Tubes in Natural Convection
,”
Int. J. Heat Mass Transfer
,
93
, pp.
991
999
. 10.1016/j.ijheatmasstransfer.2015.10.034
4.
Jang
,
D.
,
Park
,
S.-J.
,
Yook
,
S.-J.
, and
Lee
,
K.-S.
,
2014
, “
The Orientation Effect for Cylindrical Heat Sinks With Application to LED Light Bulbs
,”
Int. J. Heat Mass Transfer
,
71
, pp.
496
502
. 10.1016/j.ijheatmasstransfer.2013.12.037
5.
Sparrow
E. M.
, and
Gregg
J. L.
,
1956
, “
Laminar-Free-Convection Heat Transfer From the Outer Surface of a Vertical Circular Cylinder
,”
Trans. ASME
,
78
, pp.
1823
1829
.
6.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
1974
, “
Local Nonsimilar Solutions for Natural Convection on a Vertical Cylinder
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
178
183
. 10.1115/1.3450161
7.
Lee
,
H. R.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Natural Convection Along Slender Vertical Cylinders With Variable Surface Temperature
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
103
–108. 10.1115/1.3250439
8.
Na
,
T. Y.
,
1995
, “
Effect of Wall Conduction on Natural Convection Over a Vertical Slender Hollow Circular Cylinder
,”
Appl. Sci. Res.
,
54
(
1
), pp.
39
50
. 10.1007/BF01666801
9.
Pop
,
I.
, and
Na
,
T. Y.
,
2000
, “
Conjugate Free Convection Over a Vertical Slender Hollow Cylinder Embedded in a Porous Medium
,”
Heat Mass Transfer und Stoffuebertragung
,
36
(
5
), pp.
375
379
. 10.1007/s002310000124
10.
Popiel
,
C. O.
,
2008
, “
Free Convection Heat Transfer From Vertical Slender Cylinders: A Review
,”
Heat Transf. Eng.
,
29
(
6
), pp.
521
536
. 10.1080/01457630801891557
11.
Eslami
,
M.
, and
Jafarpur
,
K.
,
2011
, “
Laminar Natural Convection Heat Transfer From Isothermal Cylinders With Active Ends
,”
Heat Transf. Eng.
,
32
(
6
), pp.
506
513
. 10.1080/01457632.2010.506378
12.
Day
,
J. C.
,
Zemler
,
M. K.
,
Traum
,
M. J.
, and
Boetcher
,
S. K. S.
,
2013
, “
Laminar Natural Convection From Isothermal Vertical Cylinders: Revisting a Classical Subject
,”
ASME J. Heat Transfer
,
135
(
2
), p.
022505
. 10.1115/1.4007421
13.
Kalendar
,
A.
,
Karar
,
S.
,
Kalendar
,
A.
, and
Oosthuizen
,
P.
,
2017
, “
Correlations for Natural Convective Heat Transfer From Vertical and Inclined Cylinders
,”
Heat Transf. Eng.
,
38
(
1
), pp.
75
86
. 10.1080/01457632.2016.1156413
14.
Narahari
,
M.
,
Suresh Kumar Raju
,
S.
,
Pendyala
,
R.
, and
Ilyas
,
S. U.
,
2020
, “
Numerical Investigation of Unsteady Multiphase Nanofluid-Free Convection Flow About a Vertical Cylinder With Non-Uniform Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031014
. 10.1115/1.4044905
15.
Fujii
,
T.
,
Takeuchi
,
M.
,
Fujii
,
M.
,
Suzaki
,
K.
, and
Uehara
,
H.
,
1970
, “
Laminar Natural Convection Heat Transfer From the Outer Surface of a Vertical Cylinder
,”
Int. J. Heat Mass Transf.
,
13
(
5
), pp.
607
615
. 10.1016/0017-9310(70)90125-0
16.
Al-Arabi
,
M.
, and
Khamis
,
M.
,
1982
, “
Natural Convection—Heat Transfer Handbook
,”
Int. J. Heat Mass Transf.
,
25
(
I
), pp.
3
15
. 10.1016/0017-9310(82)90229-0
17.
Hassani
,
A. V.
, and
Hollands
,
K. G. T.
,
1989
, “
On Natural Convection Heat Transfer From Three-Dimensional Bodies of Arbitrary Shape
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
363
371
. 10.1115/1.3250686
18.
Jarall
,
S.
, and
Campo
,
A.
,
2005
, “
Experimental Study of Natural Convection From Electrically Heated Vertical Cylinders Immersed in Air
,”
Exp. Heat Transfer
,
18
(
3
), pp.
127
134
. 10.1080/08916150590953360
19.
Popiel
,
C. O.
,
Wojtkowiak
,
J.
, and
Bober
,
K.
,
2007
, “
Laminar Free Convective Heat Transfer From Isothermal Vertical Slender Cylinder
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
607
613
. 10.1016/j.expthermflusci.2007.07.003
20.
Kang
,
G.-U.
,
Chung
,
B.-J.
, and
Kim
,
H.-J.
,
2014
, “
Natural Convection Heat Transfer on a Vertical Cylinder Submerged in Fluids Having High Prandtl Number
,”
Int. J. Heat Mass Transfer
,
79
, pp.
4
11
. 10.1016/j.ijheatmasstransfer.2014.07.077
21.
Kang
,
G. U.
, and
Chung
,
B. J.
,
2010
, “
The Experimental Study on Transition Criteria of Natural Convection Inside a Vertical Pipe
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1057
1063
. 10.1016/j.icheatmasstransfer.2010.06.016
22.
Ohk
,
S. M.
, and
Chung
,
B. J.
,
2017
, “
Natural Convection Heat Transfer Inside an Open Vertical Pipe: Influences of Length, Diameter and Prandtl Number
,”
Int. J. Therm. Sci.
,
115
, pp.
54
64
. 10.1016/j.ijthermalsci.2017.01.014
23.
Kang
,
G. U.
, and
Yook
,
D. S.
,
2019
, “
Laminar Natural Convection Heat Transfer Depending on Diameters of Vertical Cylinders With Circular Cross-Section With High Prandtl Number
,”
Int. J. Heat Mass Transfer
,
134
, pp.
554
565
. 10.1016/j.ijheatmasstransfer.2019.01.073
24.
Kang
,
G. U.
, and
Chung
,
B. J.
,
2012
, “
Influence of the Height-to-Diameter Ratio on Turbulent Mixed Convection in Vertical Cylinders
,”
Heat Mass Transfer und Stoffuebertragung
,
48
(
7
), pp.
1183
1191
. 10.1007/s00231-012-0974-1
25.
Babu
,
S. R.
, and
Rao
,
G. S.
,
2018
, “
Buoyancy-Induced Natural Convective Heat Transfer Along a Vertical Cylinder Using Water-Al2O3 Nanofluids
,”
J. Therm. Sci. Eng. Appl.
,
10
(
3
), pp.
1
7
. 10.1115/1.4038701
26.
Sheremet
,
M. A.
,
2012
, “
Laminar Natural Convection in an Inclined Cylindrical Enclosure Having Finite Thickness Walls
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3582
3600
. 10.1016/j.ijheatmasstransfer.2012.02.046
27.
Sheremet
,
M. A.
, and
Trifonova
,
T. A.
,
2013
, “
Unsteady Conjugate Natural Convection in a Vertical Cylinder Partially Filled With a Porous Medium
,”
Numer. Heat Transfer Part A Appl.
,
64
(
12
), pp.
994
1015
. 10.1080/10407782.2013.811973
28.
Sheremet
,
M. A.
, and
Trifonova
,
T. A.
,
2014
, “
Unsteady Conjugate Natural Convection in a Vertical Cylinder Containing a Horizontal Porous Layer: Darcy Model and Brinkman-Extended Darcy Model
,”
Transp. Porous Media
,
101
(
3
), pp.
437
463
. 10.1007/s11242-013-0253-8
29.
Lim
,
C. K.
, and
Chung
,
B. J.
,
2014
, “
Influence of a Center Anode in Analogy Experiments of Long Flow Ducts
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
174
180
. 10.1016/j.icheatmasstransfer.2014.06.010
30.
Chae
,
M. S.
, and
Chung
,
B. J.
,
2015
, “
Heat Transfer Effects of Chimney Height, Diameter, and Prandtl Number
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
196
202
. 10.1016/j.icheatmasstransfer.2015.06.004
31.
Goodrich
,
S. S.
, and
Marcum
,
W. R.
,
2019
, “
Natural Convection Heat Transfer and Boundary Layer Transition for Vertical Heated Cylinders
,”
Exp. Therm. Fluid Sci.
,
105
, pp.
367
380
. 10.1016/j.expthermflusci.2019.04.010
32.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2019
, “
3D Numerical Study of Natural Convection Heat Transfer From a Hollow Horizontal Cylinder Placed on the Ground
,”
Int. J. Therm. Sci.
,
140
, pp.
429
441
. 10.1016/j.ijthermalsci.2019.03.015
33.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
. 10.1016/j.ijheatmasstransfer.2016.01.024
34.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Combined Effect of Turbulent Natural Convection and Radiation From a Horizontal Cylinder
,”
J. Thermophys. Heat Transfer
, pp.
1
10
. 10.2514/1.T5994
You do not currently have access to this content.