Abstract

The prescriptive approach of the Moroccan Building Thermal Regulation (RTCM 2015) requires thermal insulation of buildings’ slab-on-ground in almost all climatic zones of Morocco. This work aims at demonstrating that this requirement is an unnecessarily expensive constraint for most Moroccan climatic zones where the buildings’ slab-on-ground temperatures below 19 °C or above 26 °C account for only 8.6% and 22% of the cold and hot semester days, respectively. This work shows also that the slab-on-ground of a building is subject to (i) a slow mono-dimensional vertical heat transfer as the outdoor air temperature long-term extrema are delayed for around 22 days and (ii) a faster bi-dimensional horizontal heat transfer as the outdoor air temperature singularities are delayed for about 2 days by 5 m from the edge of the building. To limit this undesired lateral heat transfer, the authors recommend lateral insulation of the building’s foundations over 50 cm depth. In addition, building thermal simulation software needs improvements regarding the site-specific models of the seasonal variation for buildings’ slab-on-ground temperature. A solution is proposed to obtain these variations directly from those of the outdoor air temperature. It is shown that the slab-on-ground surface temperature varies almost like the undisturbed underground temperature at 1.6 m depth for the studied case.

References

1.
Santamouris
,
M.
, and
Kolokotsa
,
D.
,
2013
, “
Passive Cooling Dissipation Techniques for Buildings and Other Structures
,”
Energy Buildings
,
57
, pp.
74
94
. 10.1016/j.enbuild.2012.11.002
2.
Goudarzi
,
H.
, and
Mostafaeipour
,
A.
,
2017
, “
Energy Saving Evaluation of Passive Systems for Residential Buildings in Hot and Dry Regions
,”
Renew. Sust. Energy Rev.
,
68
, pp.
432
446
. 10.1016/j.rser.2016.10.002
3.
Bahadori
,
M. N.
, and
Dehghani-Sanij
,
A. R.
,
2014
, Chapter 1,
Wind Towers: Architecture, Climate and Sustainability
,
A. A. M.
Sayigh
, ed.,
Springer International Publishing
,
Basel, Switzerland
.
4.
Ascione
,
F.
,
2017
, “
Energy Conservation and Renewable Technologies for Buildings to Face the Impact of the Climate Change and Minimize the Use of Cooling
,”
Sol. Energy
,
154
, pp.
34
100
. 10.1016/j.solener.2017.01.022
5.
Staszczuk
,
A.
,
Wojchiech
,
M.
, and
Kuczynski
,
T.
,
2017
, “
The Effect of Floor Insulation on Indoor Air Temperature and Energy Consumption of Residential Buildings in Moderate Climates
,”
Energy
,
138
, pp.
139
146
. 10.1016/j.energy.2017.07.060
6.
Porritt
,
S. M.
,
Cropper
,
P. C.
,
Shao
,
L.
, and
Goodier
,
C. I.
,
2012
, “
Ranking of Interventions to Reduce Dwelling Overheating During Heat Waves
,”
Energy Buildings
,
55
, pp.
16
27
. 10.1016/j.enbuild.2012.01.043
7.
Sakkaa
,
A.
,
Santamouris
,
M.
,
Livada
,
I.
,
Nicol
,
F.
, and
Wilson
,
M.
,
2012
, “
On the Thermal Performance of Low-Income Housing During Heat Waves
,”
Energy Buildings
,
49
, pp.
69
77
. 10.1016/j.enbuild.2012.01.023
8.
Santamouris
,
M.
,
Pavlou
,
K.
,
Synnefa
,
A.
,
Niachou
,
K.
, and
Kolokotsa
,
D.
,
2007
, “
Recent Progress on Passive Cooling Techniques: Advanced Technological Developments to Improve Survivability Levels in Low-Income Households
,”
Energy Buildings
,
39
(
7
), pp.
859
866
. 10.1016/j.enbuild.2007.02.008
9.
Khabbaz
,
M.
,
Benhamou
,
B.
,
Limam
,
K.
,
Hollmuller
,
P.
,
Hamdi
,
H.
, and
Bennouna
,
A.
,
2016
, “
Experimental and Numerical Study of an Earth-to-Air Heat Exchanger for Air Cooling in a Residential Building in Hot Semi-Arid Climate
,”
Energy Buildings
,
125
, pp.
109
121
. 10.1016/j.enbuild.2016.04.071
10.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
, pp.
81
83
.
11.
Kusuda
,
T.
, and
Archenbach
,
P. R.
,
1965
, “
Earth Temperature and Thermal Diffusivity at Selected Stations in the United States
,”
ASHRAE Trans.
,
71
(
1
), pp.
61
74
.
12.
Benhammou
,
M.
, and
Draoui
,
B.
,
2011
, “
Modélisation de la Température en Profondeur du sol Pour la Région D’Adrar—Effet de la Nature du sol
,”
Rev. Energies Renouvelables
,
14
(
2
), pp.
219
228
.
13.
Márquez
,
A.
,
Martínez Bohórquez
,
J. M.
,
Melgar
,
, and
G
,
S.
,
2016
, “
Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to Very Low Enthalpy Geothermal Energy Systems
,”
Sensors
,
16
(
3
), pp.
306
318
. 10.3390/s16030306
14.
Evstatiev
,
B.
,
2013
, “
Evaluation of Thermal Diffusivity of Soil Near the Surface: Methods and Result
,”
Bulgarian J. Agricultural Sci.
,
19
(
3
), pp.
467
471
.
15.
Adams
,
W. M.
,
Watts
,
G.
, and
Mason
,
G.
,
1976
, “
Estimation of Thermal Diffusivity From Field Observations of Temperature as a Function of Time and Depth
,”
Am. Mineral.
,
61
(
7–8
), pp.
560
568
.
16.
Horton
,
R.
,
Wierenga
,
P. J.
, and
Nielsen
,
D. R.
,
1983
, “
Evaluation of Methods for Determining Apparent Thermal Diffusivity of Soil Near the Surface
,”
J. Am. Soil Sci. Soc.
,
47
(
1
), pp.
23
32
. 10.2136/sssaj1983.03615995004700010005x
17.
Koo
,
M.-H.
, and
Song
,
Y.
,
2008
, “
Estimating Apparent Thermal Diffusivity Using Temperature Time Series: A Comparison of Temperature Data Measured in KMA Boreholes and NGMN Wells
,”
Geosci. J.
,
12
(
3
), pp.
255
264
. 10.1007/s12303-008-0026-5
18.
Busby
,
J.
,
2016
, “
Thermal Conductivity and Diffusivity Estimations for Shallow Geothermal Systems
,”
Q. J. Eng. Geol. Hydrogeol.
,
49
(
2
), pp.
138
146
. 10.1144/qjegh2015-079
19.
Gao
,
Z.
,
Lenschow
,
D.
,
Horton
,
R.
,
Zhou
,
M.
,
Wang
,
L.
, and
Wen
,
J.
,
2008
, “
Comparison of Two Soil Temperature Algorithms for a Bare Ground Site on the Loess Plateau in China
,”
J. Geophys. Res.
,
113
(
18
), pp.
1
11
. 10.1029/2008JD010285
20.
Gao
,
Z.
,
Horton
,
R.
,
Wang
,
L.
,
Liu
,
H.
, and
Wenm
,
J.
,
2008
, “
An Improved Force-Restore Method for Soil Temperature Prediction
,”
Eur. J. Soil Sci.
,
59
(
5
), pp.
972
981
. 10.1111/j.1365-2389.2008.01060.x
21.
Wassman
,
W. J.
,
1993
, “
Periodic Temperature Variation in an Inhomogeneous Soil: A Comparison of Approximate and Exact Analytical Expressions
,”
Soil Sci.
,
155
(
5
), pp.
331
338
. 10.1097/00010694-199305000-00004
22.
Sengupta
,
A.
,
Sawhney
,
R. L.
, and
Sodha
,
M. S.
,
1995
, “
Effect of Inhomogeneous Thermal Conductivity on Steady Periodic Heat Flow Through Semi-Infinite Media
,”
Int. J. Energy Res.
,
19
(
1
), pp.
7
11
. 10.1002/er.4440190103
23.
CANMet, Natural Resources Canada
,
RETSCREEN Version 4 Software, CleanEnergy Management Software System for Energy Efficiency, Renewable Energyand Cogeneration Project Feasibility Analysis
, https://www.nrcan.gc.ca/energy/software-tools/7465.
24.
Thomas
,
H. R.
, and
Rees
,
S. W.
,
1999
, “
The Thermal Performance of Ground Floor Slabs—A Full Scale in situ Experiment
,”
Building Environ.
,
34
(
2
), pp.
139
164
. 10.1016/S0360-1323(98)00001-8
25.
Krarti
,
M.
,
1996
, “
Effect of Spatial Variation of Soil Thermal Properties on Slab-on-Ground Heat Transfer
,”
Building Environ.
,
31
(
1
), pp.
51
57
. 10.1016/0360-1323(95)00026-7
26.
Benhamou
,
B.
,
Hamdi
,
H.
,
Brakez
,
A.
, and
Bennouna
,
A.
,
2013
, “
RafriBAT: A Project to Introduce Energy Efficiency in Buildings in Marrakech Area by Means of Passive and Low Exergy Air-Conditioning Systems
,”
International Renewable and Sustainable Energy Conference
,
Ouarzazate, Morocco
,
Mar. 7–9
, pp.
402
407
.
You do not currently have access to this content.