Abstract

World energy demand has increased immediately and is expected to continue to grow in the foreseeable future. Therefore, an overall change of energy consumption continuously from fossil fuels to renewable energy sources, and low service and maintenance price are the benefits of using renewable energies such as using wind turbines as an electricity generator. In this context, offshore wind power refers to the development of wind parks in bodies of water to produce electricity from wind. Better wind speeds are available offshore compared to on land, so offshore wind power's contribution in terms of electricity supplied is higher. However, these structures are very susceptible to degradation of their mechanical properties considering various hostile loads. The scope of this work is the study of the damage noticed in full-scale 48 m fiberglass composite blades for offshore wind turbine. In this paper, the most advanced features currently available in finite element (FE) abaqus/Implicit have been employed to simulate the response of blades for a sound knowledge of the mechanical behavior of the structures and then localize the susceptible sections.

References

1.
Dupont
,
E.
,
Koppelaar
,
R.
, and
Jeanmart
,
H.
,
2018
, “
Global Available Wind Energy With Physical and Energy Return on Investment Constraints
,”
Appl. Energy
,
209
, pp.
322
338
. 10.1016/j.apenergy.2017.09.085
2.
Pillai
,
A. C.
,
Chick
,
J.
,
Johanning
,
L.
, and
Khorasanchi
,
M.
,
2018
, “
Offshore Wind Farm Layout Optimization Using Particle Swarm Optimization
,”
J. Ocean Eng. Mar., Energy
,
4
(
1
), pp.
73
88
. 10.1007/s40722-018-0108-z
3.
Nachtane
,
M.
,
Tarfaoui
,
M.
, and
Saifaoui
,
D.
,
2018
, “
Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies. World Academy of Science, Engineering and Technology
,”
Int. J. Energy Power Eng.
,
5
(
1
), p.
12
.
4.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
El Moumen
,
A.
, and
Saifaoui
,
D.
,
2017
, “
Damage Prediction of Horizontal Axis Marine Current Turbines Under Hydrodynamic, Hydrostatic and Impacts Loads
,”
Compos. Struct.
,
170
, pp.
146
157
. 10.1016/j.compstruct.2017.03.015
5.
Nachtane
,
M.
,
Tarfaoui
,
M.
, and
Saifaoui
,
D.
,
2017
,
Matériaux composites pour les énergies marines renouvelables
,
Éditions universitaires européennes
,
Riga, Latvia
.
6.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
El Moumen
,
A.
, and
Saifaoui
,
D.
,
2016
, “
Numerical Investigation of Damage Progressive in Composite Tidal Turbine for Renewable Marine Energy
,”
International IEEE Renewable and Sustainable Energy Conference (IRSEC)
,
Marrakech, Morocco
,
Nov. 14–17
, pp.
559
563
. 10.1109/IRSEC.2016.7984026
7.
Sutherland
,
H. J.
,
1999
, “
On the Fatigue Analysis of Wind Turbines
,”
Sandia National Laboratory
,
Albuquerque, NM
, . SAND99-0089.
8.
Kong
,
C.
,
Kim
,
T.
,
Han
,
D.
, and
Sugiyama
,
Y.
,
2006
, “
Investigation of Fatigue Life for a Medium Scale Composite Wind Turbine Blade
,”
Int. J. Fatigue
,
28
(
10
), pp.
1382
1388
. 10.1016/j.ijfatigue.2006.02.034
9.
Marin
,
J. C.
,
Barroso
,
A.
,
Paris
,
F.
, and
Canas
,
J.
,
2009
, “
Study of Fatigue Damage in Wind Turbine Blades
,”
Eng. Failure Anal.
,
16
(
2
), pp.
656
668
. 10.1016/j.engfailanal.2008.02.005
10.
Muller
,
S.
,
Deicke
,
M.
, and
De Doncker
,
R. W.
,
2002
, “
Doubly Fed Induction Generator Systems for Wind Turbines
,”
IEEE Ind. Appl. Mag.
,
8
(
3
), pp.
26
33
. 10.1109/2943.999610
11.
Li
,
C.
,
Xiao
,
Y.
,
Xu
,
Y. L.
,
Peng
,
Y. X.
,
Hu
,
G.
, and
Zhu
,
S.
,
2018
, “
Optimization of Blade Pitch in H-Rotor Vertical Axis Wind Turbines Through Computational Fluid Dynamics Simulations
,”
Appl. Energy
,
212
, pp.
1107
1125
. 10.1016/j.apenergy.2017.12.035
12.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
,
Hoboken, NJ
.
13.
Mikkelsen
,
L. P.
, and
Mishnaevsky
,
L.
, Jr.
,
2017
, “
Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities
,”
Materials
,
10
(
11
), p.
1278
. 10.3390/ma10111278
14.
Fawaz
,
Z.
, and
Ellyin
,
F.
,
1994
, “
Fatigue Failure Model for Fibre-Reinforced Materials Under General Loading Conditions
,”
J. Compos. Mater.
,
28
(
15
), pp.
1432
1451
. 10.1177/002199839402801503
15.
Tarfaoui
,
M.
,
Khadimallah
,
H.
,
Imad
,
A.
, and
Pradillon
,
J. Y.
,
2012
, “
Design and Finite Element Modal Analysis of 48m Composite Wind Turbine Blade
,”
Appl. Mech. Mater.
,
146
, pp.
170
184
. 10.4028/www.scientific.net/AMM.146.170
16.
Mostapha
,
T.
,
2011
, “Experimental Investigation of Dynamic Compression and Damage Kinetics of Glass/Epoxy Laminated Composites Under High Strain Rate Compression,”
Advances in Composite Materials-Ecodesign and Analysis
,
InTech
,
Rijeka, Croatia
, pp.
359
380
.
17.
Schubel
,
P. J.
, and
Crossley
,
R. J.
,
2012
, “
Wind Turbine Blade Design
,”
Energies
,
5
(
9
), pp.
3425
3449
. 10.3390/en5093425
18.
Kong
,
C.
,
Bang
,
J.
, and
Sugiyama
,
Y.
,
2005
, “
Structural Investigation of Composite Wind Turbine Blade Considering Various Load Cases and Fatigue Life
,”
Energy
,
30
(
11–12
), pp.
2101
2114
. 10.1016/j.energy.2004.08.016
19.
Shah
,
O. R.
, and
Tarfaoui
,
M.
,
2017
, “
Determination of Mode I & II Strain Energy Release Rates in Composite Foam Core Sandwiches. An Experimental Study of the Composite Foam Core Interfacial Fracture Resistance
,”
Compos. Part B Eng.
,
111
, pp.
134
142
. 10.1016/j.compositesb.2016.11.044
20.
Heinzen
,
J.
,
2010
, “
Double Feature: Pictures of Last Month's Invenergy Wind Turbine Blade Failures and Who's Fueling the Myth of the Well Funded Anti-Wind Organization?
,” accessed Dec. 10, 2018, http://betterplan.squarespace.com/todays-special/2010/8/21/82010-double-feature-pictures-of-last-months-invenergy-wind.html
21.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2006
, “
Simulation of Fatigue Failure in a Full Composite Wind Turbine Blade
,”
Compos. Struct.
,
74
(
3
), pp.
332
342
. 10.1016/j.compstruct.2005.04.027
22.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
Saifaoui
,
D.
,
El Moumen
,
A.
,
Hassoon
,
O. H.
, and
Benyahia
,
H.
,
2018
, “
Evaluation of Durability of Composite Materials Applied to Renewable Marine Energy: Case of Ducted Tidal Turbine
,”
Energy Rep.
,
4
, pp.
31
40
. 10.1016/j.egyr.2018.01.002
23.
Spera
,
D. A.
,
1994
,
Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering
,
ASME Press
,
New York
.
24.
Tarfaoui
,
M.
,
Nachtane
,
M.
,
Khadimallah
,
H.
, and
Saifaoui
,
D.
,
2018
, “
Simulation of Mechanical Behavior and Damage of a Large Composite Wind Turbine Blade Under Critical Loads
,”
Appl. Compos. Mater.
,
25
(
2
), pp.
237
254
. 10.1007/s10443-017-9612-x
25.
Hosseini-Toudeshky
,
H.
,
Jahanmardi
,
M.
, and
Goodarzi
,
M. S.
,
2015
, “
Progressive Debonding Analysis of Composite Blade Root Joint of Wind Turbines Under Fatigue Loading
,”
Compos. Struct.
,
120
, pp.
417
427
. 10.1016/j.compstruct.2014.10.025
26.
Hassoon
,
O. H.
,
Tarfaoui
,
M.
,
El Moumen
,
A.
,
Benyahia
,
H.
, and
Nachtane
,
M.
,
2017
, “
Numerical Evaluation of Dynamic Response for Flexible Composite Structures Under Slamming Impact for Naval Applications
,”
Appl. Compos. Mater.
,
25
(
3
), pp.
689
706
10.1007/s10443-017-9646-0
27.
El Moumen
,
A.
,
Tarfaoui
,
M.
,
Lafdi
,
K.
, and
Benyahia
,
H.
,
2017
, “
Dynamic Properties of Carbon Nanotubes Reinforced Carbon Fibers/Epoxy Textile Composites Under Low Velocity Impact
,”
Compos. Part B Eng.
,
125
, pp.
1
8
. 10.1016/j.compositesb.2017.05.065
You do not currently have access to this content.