Abstract

The energy consumption for cooling electronic equipment in data centers using central systems is significant and will continue to rise. The motivation of the present research study is based on the need to determine optimization strategies to improve and optimize the thermal efficiency of data centers using a simulation-based approach. Here, simulation is used to model and optimize a proposed research data center for use as an environment to test equipment and investigate best practices and strategies such as containment and hybrid cooling. The optimization technique used in this study finds the optimal operating conditions and containment strategies of the data center while meeting specific thermal conformance criteria. More specifically, optimum supply airflow rate and temperature setpoint of cooling units are sought under different containment configurations, including both hot aisle and cold aisle containment strategies in both full and partial setups. The results of the computational fluid dynamics (CFD) simulations indicated a lower probability of hot spots with full hot aisle containment strategy in a data center operating at lower supply airflow rate and higher supply temperature setpoint. The optimization approach helped to determine a more efficient cooling system without the risk of under-provisioning. The study considered steady-state conditions with static heat load and fixed equipment layout. However, the generalized optimization process developed in the present study should add to the repertoire of tools presently used for the optimization of new air-cooled data centers.

References

1.
Shehabi
,
A.
,
Smith
,
S.
,
Sartor
,
D.
,
Brown
,
R.
,
Herrlin
,
M.
,
Koomey
,
J.
,
Masanet
,
E.
,
Horner
,
N.
,
Azevedo
,
I.
, and
Lintner
,
W.
,
2016
, “
United States Data Center Energy Usage Report
.”
2.
Brown
,
E. R.
,
Masanet
,
E. R.
,
Nordman
,
B.
,
Tschudi
,
W. F.
,
Shehabi
,
A.
,
Stanley
,
J.
,
Koomey
,
J. G.
,
Sartor
,
D. A.
, and
Chan
,
P. T.
,
2008
, “
Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431
.”
3.
2008
, “
SMART 2020: Enabling the Low Carbon Economy in the Information Age
,” https://www.theclimategroup.org/what-we-do/news-and-blogs/SMART-2020-Enabling-the-low-carbon-economy-in-the-information-age, Accessed June 10, 2019.
4.
Alkharabsheh
,
S.
,
Fernandes
,
J.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Ortega
,
A.
, and
Sammakia
,
B.
,
2015
, “
A Brief Overview of Recent Developments in Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040801
. 10.1115/1.4031326
5.
Joshi
,
Y.
, and
Kumar
,
P.
,
2012
,
Energy Efficient Thermal Management of Data Centers
,
Springer
,
New York
.
6.
Patel
,
C. D.
,
Bash
,
C. E.
,
Belady
,
C.
,
Stahl
,
L.
, and
Sullivan
,
D.
,
2001
, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications
,”
Pacific Rim Technical Conference and Exposition of Packaging and Integration of Electronic and Photonic Systems (IPACK)
,
Kauai, HI
,
July 8–13
, ASME Paper No. IPACK2001-15622.
7.
Schmidt
,
R. R.
,
Karki
,
K. C.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patnkar
,
S. V.
,
2001
, “
Measurements and Predictions of the Flow Distribution Through Perforated Tiles in Raised Floor Data Centers
,”
Pacific Rim Technical Conference and Exposition of Packaging and Integration of Electronic and Photonic Systems (IPACK)
,
Kauai, HI
,
July 8–13
, ASME Paper No. IPACK2001-15728.
8.
Silva-Llanca
,
L.
,
Ortega
,
A.
,
Fouladi
,
K.
,
del Valle
,
M.
, and
Sundaralingam
,
V.
,
2018
, “
Determining Wasted Energy in the Airside of a Perimeter-Cooled Data Center via Direct Computation of the Exergy Destruction
,”
Appl. Energy
,
213
, pp.
235
246
. 10.1016/j.apenergy.2018.01.031
9.
King
,
D.
, and
Seymour
,
M.
,
2013
, “
Comparison of Simple and Detailed Data Centre CFD Models With Experimental Data
,”
29th IEEE Semiconductor Thermal Measurement and Management Symposium
,
San Jose, CA
,
Mar. 17–21
, pp.
237
242
.
10.
Alissa
,
H. A.
,
Nemati
,
K.
,
Sammakia
,
B.
,
Ghose
,
K.
,
Seymour
,
M.
, and
Schmidt
,
R.
,
2015
, “
Innovative Approaches of Experimentally Guided CFD Modeling for Data Centers
,”
31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 15–19
,
IEEE
, pp.
176
184
.
11.
Alissa
,
H. A.
,
Nemati
,
K.
,
Sammakia
,
B.
,
Seymour
,
M.
,
Schneebeli
,
K.
, and
Schmidt
,
R.
,
2015
, “
Experimental and Numerical Characterization of a Raised Floor Data Center Using Rapid Operational Flow Curves Model
,”
ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated With the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
,
San Francisco, CA
,
July 6–9
, p.
V001T09A016
.
12.
Nemati
,
K.
,
Alissa
,
H. A.
,
Murray
,
B. T.
,
Sammakia
,
B.
, and
Seymour
,
M.
,
2015
, “
Experimentally Validated Numerical Model of a Fully-Enclosed Hybrid Cooled Server Cabinet
,”
ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated With the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
,
San Francisco, CA
,
July 6–9
, p.
V001T09A041
.
13.
Pastrana
,
C.
,
2018
, “
Using Modeling and Metrics to Improve the Citigroup Flextech Upgrade
,”
ASHRAE 2018 Winter Conference
,
Jan
.
14.
Karadas
,
M.
,
Celik
,
H. M.
,
Serpen
,
U.
, and
Toksoy
,
M.
,
2015
, “
Multiple Regression Analysis of Performance Parameters of a Binary Cycle Geothermal Power Plant
,”
Geothermics
,
54
, pp.
68
75
. 10.1016/j.geothermics.2014.11.003
15.
Nada
,
S. A.
,
Said
,
M. A.
, and
Rady
,
M. A.
,
2016
, “
CFD Investigations of Data Centers’ Thermal Performance for Different Configurations of CRACs Units and Aisles Separation
,”
Alexandria Eng. J.
,
55
(
2
), pp.
959
971
. 10.1016/j.aej.2016.02.025
16.
Fakhim
,
B.
,
Armfield
,
S. W.
,
Behnia
,
M.
, and
Badr
,
A.
,
2017
, “
Parametric Study of Raised-Floor Data Centres to Improve the Cooling Efficiency
,”
ICTEA: International Conference on Thermal Engineering
,
Mar.
, Vol.
2017
.
17.
Nagarathinam
,
S.
,
Fakhim
,
B.
,
Behnia
,
M.
, and
Armfield
,
S.
,
2013
, “
A Comparison of Parametric and Multivariable Optimization Techniques in a Raised-Floor Data Center
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030905
. 10.1115/1.4023214
18.
Srinarayana
,
N.
, and
Fakhim
,
B.
,
2014
, “
Thermal Performance of an Air-Cooled Data Center With Raised-Floor and Non-Raised-Floor Configurations
,”
Heat Transf. Eng.
,
35
, pp.
384
397
. 10.1080/01457632.2013.828559
19.
Zhang
,
M.
,
An
,
Q.
,
Long
,
Z.
,
Pan
,
W.
,
Zhang
,
H.
, and
Cheng
,
X.
,
2017
, “
Optimization of Airflow Organization for a Small-Scale Data Center Based on the Cold Aisle Closure
,”
Procedia Eng.
,
205
, pp.
1893
1900
. 10.1016/j.proeng.2017.10.279
20.
Beitelmal
,
A. H.
,
2015
, “
Numerical Investigation of Data Center Raised-Floor Plenum
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
, p.
V08AT10A046
.
21.
Song
,
M.
,
Chen
,
K.
, and
Wang
,
J.
,
2017
, “
Numerical Study on the Optimized Control of Cracs in a Data Center Based on a Fast Temperature-Predicting Model
,”
J. Energy Eng.
,
143
(
5
), p.
04017041
. 10.1061/(ASCE)EY.1943-7897.0000460
22.
Billet
,
L. M.
,
Healey
,
C. M.
,
VanGilder
,
J. W.
, and
Pardey
,
Z. M.
,
2015
, “
Data Center Cooling Efficiency With Simulation-Based Optimization
,”
ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated With the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
,
San Francisco, CA
,
July 6–9
, p.
V001T09A025
.
23.
Niemann
,
J.
,
Brown
,
K.
, and
Avelar
,
V.
,
2011
, “
Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency. Schneider Electric Data Center Science Center
,” White Paper, Vol.
135
, pp.
1
14
.
24.
Alissa
,
H. A.
,
Nemati
,
K.
,
Sammakia
,
B.
,
Ghose
,
K.
,
Seymour
,
M.
,
King
,
D.
, and
Tipton
,
R.
,
2015
, “
Ranking and Optimization of CAC and HAC Leakage Using Pressure Controlled Models
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
, p.
V08BT10A043
.
25.
Kennedy
,
J.
,
2012
, “
Ramifications of Server Airflow Leakage in Data Centers With Aisle Containment
,”
Tate Access Floors
,
Jessup, MD
, White Paper.
26.
Nemati
,
K.
,
Alissa
,
H. A.
,
Murray
,
B. T.
,
Sammakia
,
B. G.
,
Tipton
,
R.
, and
Seymour
,
M. J.
,
2017
, “
Comprehensive Experimental and Computational Analysis of a Fully Contained Hybrid Server Cabinet
,”
ASME J. Heat Transfer
,
139
(
8
), p.
082101
. 10.1115/1.4036100
27.
Arghode
,
V. K.
,
Kumar
,
P.
,
Joshi
,
Y.
,
Weiss
,
T.
, and
Meyer
,
G.
,
2013
, “
Rack Level Modeling of Air Flow Through Perforated Tile in a Data Center
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030902
. 10.1115/1.4024994
28.
Erden
,
H. S.
,
Koz
,
M.
,
Yildirim
,
M. T.
, and
Khalifa
,
H. E.
,
2017
, “
Optimization of Enclosed Aisle Data Centers With Induced CRAH Bypass
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
7
(
12
), pp.
1981
1989
. 10.1109/TCPMT.2017.2760355
29.
Semin
,
V.
,
Bardsley
,
M.
,
Rosten
,
O.
, and
Aldham
,
C.
,
2015
, “
Application of a Multilevel Unstructured Staggered Solver to Thermal Electronic Simulations
,”
Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 31
,
IEEE
, pp.
287
292
.
30.
Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numerical Heat Transfer
,
7
(
2
), pp.
147
163
. 10.1080/01495728408961817
31.
Future Facilities
,
2009
,
6Sigma. Room User’s Guide
,
Future Facilities
,
San Jose, CA
.
32.
Ham
,
S. W.
,
Park
,
J.
, and
Jeong
,
J. W.
,
2015
, “
Optimum Supply Air Temperature Ranges of Various Air-Side Economizers in a Modular Data Center
,”
Appl. Therm. Eng.
,
77
, pp.
163
179
. 10.1016/j.applthermaleng.2014.12.021
33.
Moore
,
J. D.
,
Chase
,
J. S.
,
Ranganathan
,
P.
, and
Sharma
,
R. K.
,
2005
, “
Making Scheduling ‘Cool’: Temperature-Aware Workload Placement in Data Centers
,”
USENIX Annual Technical Conference, General Track
,
Anaheim, CA
,
Apr. 10–15
, pp.
61
75
.
34.
Fox
,
R. W.
,
2011
,
Fox and McDonald’s Introduction to Fluid Mechanics
,
Wiley
,
Hoboken, NJ: Chichester
.
35.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
2000
,
Sensitivity Analysis
,
Wiley
,
Chichester: New York
.
You do not currently have access to this content.