Graphical Abstract Figure

Temperature contour for Perforated L fins at ambient temperature of 30 °C, heat flux of 800 W/m2, and convection coefficient of 12 W/m2K

Graphical Abstract Figure

Temperature contour for Perforated L fins at ambient temperature of 30 °C, heat flux of 800 W/m2, and convection coefficient of 12 W/m2K

Close modal

Abstract

The reduction in efficiency of photovoltaic (PV) modules when operating at high temperatures is a challenge that demands effective and economical cooling solutions. As such, aluminum heat sinks provide a passive and carbon-neutral cooling method. This study aims to find the performances of five different geometries of aluminum heat sinks to be used for cooling PV modules, where a comparative analysis of their relative performances under controlled environmental variables is performed under steady-state condition. The results show that an arrangement of solid T-shaped aluminum fins as heat sinks provides a 3.14% further reduction in PV module temperature compared to its perforated counterpart. The variation of the average PV module temperature has been compared in terms of solar radiation, ambient temperature, as well as the convection heat transfer coefficients for each heat sink geometry, where the relationship between each pair of data has been identified. The analysis reveals that performance differences may be better observed at lower values for the convection coefficient and higher values for the ambient temperatures. The methodology followed in this study provides a base model for comparing the relative performances of the chosen heat sink geometries, thus providing scopes of continuation of this work.

References

1.
Wu
,
X.
,
Li
,
C.
,
Shao
,
L.
,
Meng
,
J.
,
Zhang
,
L.
, and
Chen
,
G.
,
2021
, “
Is Solar Power Renewable and Carbon-Neutral: Evidence From a Pilot Solar Tower Plant in China Under a Systems View
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110655
.
2.
Shiva Kumar
,
B.
, and
Sudhakar
,
K.
,
2015
, “
Performance Evaluation of 10 MW Grid Connected Solar Photovoltaic Power Plant in India
,”
Energy Rep.
,
1
(
10
), pp.
184
192
.
3.
Dida
,
M.
,
Boughali
,
S.
,
Bechki
,
D.
, and
Bouguettaia
,
H.
,
2021
, “
Experimental Investigation of a Passive Cooling System for Photovoltaic Modules Efficiency Improvement in Hot and Arid Regions
,”
Energy Convers Manag.
,
243
, p.
114328
.
4.
Jiang
,
L.
,
Cui
,
S.
,
Sun
,
P.
,
Wang
,
Y.
, and
Yang
,
C.
,
2020
, “
Comparison of Monocrystalline and Polycrystalline Solar Modules
,”
Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC)
,
Chongqing, China
,
Jun. 12–14
, pp.
341
344
.
5.
Ndiaye
,
A.
,
Kébé
,
C. M. F.
,
Charki
,
A.
,
Ndiaye
,
P. A.
,
Sambou
,
V.
, and
Kobi
,
A.
,
2014
, “
Degradation Evaluation of Crystalline-Silicon Photovoltaic Modules After a Few Operation Years in a Tropical Environment
,”
Sol. Energy
,
103
(
02
), pp.
70
77
.
6.
Siecker
,
J.
,
Kusakana
,
K.
, and
Numbi
,
B. P.
,
2017
, “
A Review of Solar Photovoltaic Systems Cooling Technologies
,”
Renewable Sustainable Energy Rev.
,
79
(
05
), pp.
192
203
.
7.
Bilen
,
K.
, and
Erdoğan
,
İ
,
2023
, “
Effects of Cooling on Performance of Photovoltaic/Thermal (PV/T) Solar Panels: A Comprehensive Review
,”
Sol. Energy
,
262
, pp.
111829
.
8.
Salem Ahmed
,
M.
,
Mohamed
,
A. S. A.
, and
Maghrabie
,
H. M.
,
2019
, “
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041010
.
9.
Tiwari
,
A. K.
,
Sontake
,
V. C.
, and
Kalamkar
,
V. R.
,
2020
, “
Enhancing the Performance of Solar Photovoltaic Water Pumping System by Water Cooling Over and Below the Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021005
.
10.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Mostafa
,
M. E.
,
Essa
,
F. A.
, and
Ahmed Ali
,
M. K.
,
2018
, “
Applications of Nanofluids in Solar Energy: A Review of Recent Advances
,”
Renewable Sustainable Energy Rev.
,
82
(
Part 3
), pp.
3483
3502
.
11.
Salem
,
H.
,
Mina
,
E.
,
Abdelmessih
,
R.
, and
Mekhail
,
T.
,
2022
, “
Numerical Investigation for Performance Enhancement of Photovoltaic Cell by Nanofluid Cooling
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021012
.
12.
Ali
,
H. M.
,
2020
, “
Recent Advancements in PV Cooling and Efficiency Enhancement Integrating Phase Change Materials Based Systems—A Comprehensive Review
,”
Sol. Energy
,
197
(
11
), pp.
163
198
.
13.
Elavarasan
,
R. M.
,
Singh
,
P.
,
Leoponraj
,
S.
,
Khanna
,
S.
, and
Chandran
,
M.
,
2022
, “
Solar Photovoltaics Integrated With Hydrated Salt-Based Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051004
.
14.
Abdollahi
,
N.
, and
Rahimi
,
M.
,
2020
, “
Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021003
.
15.
Bayrak
,
F.
,
Oztop
,
H. F.
, and
Selimefendigil
,
F.
,
2020
, “
Experimental Study for the Application of Different Cooling Techniques in Photovoltaic (PV) Panels
,”
Energy Convers. Manag.
,
212
, pp.
112789
.
16.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
Sathyamurthy
,
R.
,
2019
, “
A Comprehensive Investigation of the Optimization Cooling Technique for Improving the Performance of PV Module With Reflectors Under Egyptian Conditions
,”
Sol. Energy
,
186
(
05
), pp.
257
263
.
17.
Ali
,
F. H.
,
Al-Amir
,
Q. R.
,
Hamzah
,
H. K.
, and
Alahmer
,
A.
,
2024
, “
Unveiling the Potential of Solar Cooling Technologies for Sustainable Energy and Environmental Solutions
,”
Energy Convers. Manag.
,
321
, pp.
119034
.
18.
Hernandez-Perez
,
J. G.
,
Carrillo
,
J. G.
,
Bassam
,
A.
,
Flota-Banuelos
,
M.
, and
Patino-Lopez
,
L. D.
,
2020
, “
A New Passive PV Heatsink Design to Reduce Efficiency Losses: A Computational and Experimental Evaluation
,”
Renewable Energy
,
147
(
09
), pp.
1209
1220
.
19.
Bahaidarah
,
H. M. S.
,
Baloch
,
A. A. B.
, and
Gandhidasan
,
P.
,
2016
, “
Uniform Cooling of Photovoltaic Panels: A Review
,”
Renewable Sustainable Energy Rev.
,
57
(
12
), pp.
1520
1544
.
20.
Gotmare
,
J. A.
,
Borkar
,
D. S.
, and
Hatwar
,
P. R.
,
2015
, “
Experimental Investigation of PV Panel With Fin Cooling Under Natural Convection
,”
Int. J. Adv. Technol. Eng. Sci.
,
3
(
2
), pp.
447
454
.
21.
El Mays
,
A.
,
Ammar
,
R.
,
Hawa
,
M.
,
Akroush
,
M. A.
,
Hachem
,
F.
,
Khaled
,
M.
, and
Ramadan
,
M.
,
2017
, “
Improving Photovoltaic Panel Using Finned Plate of Aluminum
,”
Energy Procedia
,
119
(
07
), pp.
812
817
.
22.
Bayrak
,
F.
,
Oztop
,
H. F.
, and
Selimefendigil
,
F.
,
2019
, “
Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels Under Natural Convection
,”
Sol. Energy
,
188
(
06
), pp.
484
494
.
23.
Elbreki
,
A. M.
,
Sopian
,
K.
,
Fazlizan
,
A.
, and
Ibrahim
,
A.
,
2020
, “
An Innovative Technique of Passive Cooling PV Module Using Lapping Fins and Planner Reflector
,”
Case Stud. Therm. Eng.
,
19
, pp.
100607
.
24.
Arifin
,
Z.
,
Tjahjana
,
D. D. D. P.
,
Hadi
,
S.
,
Rachmanto
,
R. A.
,
Setyohandoko
,
G.
, and
Sutanto
,
B.
,
2020
, “
Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks
,”
Int. J. Photoenergy
,
2020
, pp.
1
9
.
25.
Popovici
,
C. G.
,
Hudişteanu
,
S. V.
,
Mateescu
,
T. D.
, and
Cherecheş
,
N.-C.
,
2016
, “
Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks
,”
Energy Procedia
,
85
(
12
), pp.
425
432
.
26.
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
27.
Salami
,
P.
,
Ajabshirchi
,
Y.
,
Abdollahpoor
,
S.
, and
Behfar
,
H.
,
2016
, “
A Comparison Among Different Parameters for the Design of a Photovoltaic/Thermal System Using Computational Fluid Dynamics
,”
Eng. Technol. Appl. Sci. Res.
,
6
(
5
), pp.
1119
1123
.
28.
Marinić-Kragić
,
I.
,
Nižetić
,
S.
,
Grubišić-Čabo
,
F.
, and
Čoko
,
D.
,
2020
, “
Analysis and Optimization of Passive Cooling Approach for Free-Standing Photovoltaic Panel: Introduction of Slits
,”
Energy Convers. Manag.
,
204
, pp.
112277
.
29.
Selimefendigil
,
F.
,
Bayrak
,
F.
, and
Oztop
,
H. F.
,
2018
, “
Experimental Analysis and Dynamic Modeling of a Photovoltaic Module With Porous Fins
,”
Renewable Energy
,
125
, pp.
193
205
.
30.
Hasan
,
D. J.
, and
Farhan
,
A. A.
,
2019
, “
Enhancing the Efficiency of Photovoltaic Panel Using Open-Cell Copper Metal Foam Fins
,”
Int. J. Renew. Energy Res.
,
9
(
4
), pp.
1849
1855
.
31.
Kim
,
J.
,
Bae
,
S.
,
Yu
,
Y.
, and
Nam
,
Y.
,
2020
, “
Experimental and Numerical Study on the Cooling Performance of Fins and Metal Mesh Attached on a Photovoltaic Module
,”
Energies
,
13
(
1
), pp.
85
.
32.
Soliman
,
A. M. A.
,
Hassan
,
H.
, and
Ookawara
,
S.
,
2019
, “
An Experimental Study of the Performance of the Solar Cell With Heat Sink Cooling System
,”
Energy Procedia
,
162
(
04
), pp.
127
135
.
33.
Abudllah
,
Y.
,
Arifin
,
Z.
,
Danardono Dwi Prija Tjahjana
,
D.
,
Suyitno
,
S.
, and
Aulia Putra
,
M. R.
,
2020
, “
Analysis of the Copper and Aluminum Heat Sinks Addition to the Performance of Photovoltaic Panels With CFD Modelling
,”
Proceedings of the 2020 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering (ICITAMEE)
,
Yogyakarta, Indonesia
,
Oct. 13–14
, pp.
41
45
.
34.
Kim
,
J.
, and
Nam
,
Y.
,
2019
, “
Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation
,”
Energies
,
12
(
4
), pp.
758
.
35.
Grubišić-Čabo
,
F.
,
Nižetić
,
S.
,
Marinić Kragić
,
I.
, and
Čoko
,
D.
,
2019
, “
Further Progress in the Research of Fin-Based Passive Cooling Technique for the Free-Standing Silicon Photovoltaic Panels
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3475
3495
.
36.
“Devcon Plastic Steel L® Liquid (B) Techincal Data Sheet,” https://itwperformancepolymers.com/wp-content/uploads/Plastic-Steel%C2%AE-Liquid-B-v3-.pdf. Accessed on April 2023.
37.
Kopeliovich
,
D.
,
2023
, “Wrought Aluminum Alloy 1100,” https://www.substech.com/dokuwiki/doku.php?id=wrought_aluminum_alloy_1100, Accessed December 13, 2023.
38.
Soliman
,
A. M. A.
,
Hassan
,
H.
,
Ahmed
,
M.
, and
Ookawara
,
S.
,
2020
, “
A 3d Model of the Effect of Using Heat Spreader on the Performance of Photovoltaic Panel (PV)
,”
Math. Comput. Simul.
,
167
(
05
), pp.
78
91
.
39.
Lu
,
S.
,
Liu
,
J.
,
Lin
,
G.
, and
Zhang
,
P.
,
2017
, “
Modified Scaled Boundary Finite Element Analysis of 3D Steady-State Heat Conduction in Anisotropic Layered Media
,”
Int. J. Heat Mass Transfer
,
108
(
01
), pp.
2462
2471
.
40.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
A Three-Dimensional Comprehensive Numerical Investigation of Different Operating Parameters on the Performance of a Photovoltaic Thermal System With Pancake Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), pp.
031009
.
41.
Jobair
,
H. K.
,
2017
, “
Improving of Photovoltaic Cell Performance by Cooling Using Two Different Types of Fins
,”
Int. J. Comput. Appl.
,
157
(
5
), pp.
6
15
.
42.
Garg
,
H. P.
,
1987
,
Advances in Solar Energy Technology
,
Springer
,
Dordrecht, the Netherlands
.
43.
Syafiqah
,
Z.
,
Amin
,
N. A. M.
,
Irwan
,
Y. M.
,
Shobry
,
M. Z.
, and
Majid
,
M. S. A.
,
2017
, “
Analysis of Photovoltaic With Water Pump Cooling by Using ANSYS
,”
J. Phys. Conf. Ser.
,
908
(
01
), p.
012083
.
44.
Duffie
,
J. A.
,
Beckman
,
W. A.
, and
McGowan
,
J.
,
1985
, “
Solar Engineering of Thermal Processes
,”
Am. J. Phys.
,
53
(
4
), pp.
382
382
.
45.
Notton
,
G.
,
Cristofari
,
C.
,
Mattei
,
M.
, and
Poggi
,
P.
,
2005
, “
Modelling of a Double-Glass Photovoltaic Module Using Finite Differences
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
2854
2877
.
46.
Kant
,
K.
,
Shukla
,
A.
,
Sharma
,
A.
, and
Biwole
,
P. H.
,
2016
, “
Thermal Response of Poly-Crystalline Silicon Photovoltaic Panels: Numerical Simulation and Experimental Study
,”
Sol. Energy
,
134
(
05
), pp.
147
155
.
47.
Daut
,
I.
,
Zainuddin
,
F.
,
Irwan
,
Y. M.
, and
Razliana
,
A. R. N.
,
2012
, “
Analysis of Solar Irradiance and Solar Energy in Perlis, Northern of Peninsular Malaysia
,”
Energy Procedia
,
18
(
05
), pp.
1421
1427
.
48.
Kumar
,
M.
, and
Kumar
,
A.
,
2017
, “
Performance Assessment and Degradation Analysis of Solar Photovoltaic Technologies: A Review
,”
Renewable Sustainable Energy Rev.
,
78
(
04
), pp.
554
587
.
49.
Chaibi
,
Y.
,
Allouhi
,
A.
,
Malvoni
,
M.
,
Salhi
,
M.
, and
Saadani
,
R.
,
2019
, “
Solar Irradiance and Temperature Influence on the Photovoltaic Cell Equivalent-Circuit Models
,”
Sol. Energy
,
188
(
07
), pp.
1102
1110
.
50.
Atsu
,
D.
,
Seres
,
I.
,
Aghaei
,
M.
, and
Farkas
,
I.
,
2020
, “
Analysis of Long-Term Performance and Reliability of PV Modules Under Tropical Climatic Conditions in Sub-Saharan
,”
Renewable Energy
,
162
(
08
), pp.
285
295
.
You do not currently have access to this content.