Abstract

One of the most significant problems solar panels face is the rising temperature in their solar cells, which can lead to a decrease in electrical production. To solve this issue, we conducted a comparison study to establish the effectiveness of using porous jute fabric that was constantly wet with water to cool the back of a photovoltaic (PV) solar panel. This fabric is well known for its high absorbency and porous structure, which allow for effective heat exchange between the PV module and its surroundings. The experiment aims to compare the electrical performance of two solar PVs: one its backside covered with jute fabric that is constantly wet with water as a cooling mechanism and the other a standard PV. When solar radiation reaches its peak of 900 W/m2 at 12:00, the findings demonstrate that this cooling method reduces the temperature of the PV panel by 23 C, where the standard PV temperature was 64 C and the temperature of the PV (with cooling) was 41 C at the same time. This decrease in temperature leads to a 2 V increase in the voltage produced by solar photovoltaics, resulting in a 1.3% improvement in electrical efficiency.

References

1.
Skoplaki
,
E.
, and
Palyvos
,
J. A.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Sol. Energy
,
83
(
5
), pp.
614
624
.
2.
Salem Ahmed
,
M.
,
Mohamed
,
A.
, and
Maghrabie
,
H. M.
,
2019
, “
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041010
.
3.
Krauter
,
S.
,
2004
, “
Increased Electrical Yield Via Water Flow Over the Front of Photovoltaic Panels
,”
Sol. Energy Mater. Sol. Cells
,
82
(
1–2
), pp.
131
137
.
4.
Soliman
,
A. M.
,
Hassan
,
H.
, and
Ookawara
,
S.
,
2019
, “
An Experimental Study of the Performance of the Solar Cell With Heat Sink Cooling System
,”
Energy Procedia
,
162
, pp.
127
135
.
5.
Bhat
,
P.
,
Iyengar
,
A. S.
,
Abhilash
,
N.
, and
Reddy
,
P. K.
,
2022
, “
Experimental Investigation and Validation of Solar PV Cooling for Enhanced Energy Conversion Efficiency for Indian Climatic Conditions
,”
J. Therm. Eng.
,
8
(
6
), pp.
711
718
.
6.
Kasaeian
,
A.
,
Khanjari
,
Y.
,
Golzari
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2017
, “
Effects of Forced Convection on the Performance of a Photovoltaic Thermal System: An Experimental Study
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
13
21
.
7.
Abdul-Ganiyu
,
S.
,
Quansah
,
D. A.
,
Ramde
,
E. W.
,
Seidu
,
R.
, and
Adaramola
,
M. S.
,
2021
, “
Study Effect of Flow Rate on Flat-Plate Water-Based Photovoltaic-Thermal (PVT) System Performance by Analytical Technique
,”
J. Clean. Prod.
,
321
, p.
128985
.
8.
Zhang
,
H.
,
Chen
,
H.
,
Liu
,
H.
,
Huang
,
J.
,
Guo
,
X.
, and
Li
,
M.
,
2018
, “
Design and Performance Study of a Low Concentration Photovoltaic-Thermal Module
,”
Int. J. Energy Res.
,
42
(
6
), pp.
2199
2212
.
9.
Vega-Garita
,
V.
,
Garg
,
S.
,
Narayan
,
N.
,
Ramirez-Elizondo
,
L.
, and
Bauer
,
P.
,
2018
, “
Testing a PV-Battery Integrated Module Prototype
,” 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), USA (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, Jun. 10–15,
IEEE
, pp.
1244
1248
.
10.
Atmaca
,
M.
, and
Pektemir
,
I. Z.
,
2019
, “
An Investigation on the Effect of the Total Efficiency of Water and Air Used Together as a Working Fluid in the Photovoltaic Thermal Systems
,”
Processes
,
7
(
8
), p.
516
.
11.
Maatallah
,
T.
,
Zachariah
,
R.
, and
Al-Amri
,
F. G.
,
2019
, “
Exergo-economic Analysis of a Serpentine Flow Type Water Based Photovoltaic Thermal System With Phase Change Material (PVT-PCM/Water)
,”
Sol. Energy
,
193
, pp.
195
204
.
12.
Muthu
,
V.
, and
Ramadas
,
G.
,
2023
, “
A Comprehensive 4e Study on the Performance of Bifacial Solar Module Installed on Different Ground Surface Colors: An Experimental Study on a Specific Site
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011012
.
13.
Wu
,
Z.
,
Xie
,
G.
,
Gao
,
F.
,
Chen
,
W.
,
Zheng
,
Q.
, and
Liu
,
Y.
,
2024
, “
Experimental Study of a Self-cooling Concentrated Photovoltaic (CPV) System Using Thermoelectric Modules
,”
Energy Convers. Manage.
,
299
, p.
117858
.
14.
Alshammari
,
A.
,
Almatrafi
,
E.
, and
Rady
,
M.
,
2024
, “
Radiative Coatings for Solar Cell Cooling: Materials, and Applications
,”
Sol. Energy
,
273
, p.
112545
.
15.
Khan
,
Y.
,
Raman
,
R.
,
Rashidi
,
M. M.
,
Caliskan
,
H.
,
Chauhan
,
M. K.
, and
Chauhan
,
A. K.
,
2023
, “
Thermodynamic Analysis and Experimental Investigation of the Water Spray Cooling of Photovoltaic Solar Panels
,”
J. Therm. Anal. Calorim.
,
148
(
12
), pp.
5591
5602
.
16.
Abdel-raheim Amr
,
A.
,
Hassan
,
A. A.
,
Abdel-Salam
,
M.
, and
El-Sayed
,
A. H. M.
,
2024
, “
An Experiment-Based Comparison of Different Cooling Methods for Photovoltaic Modules
,”
Int. J. Emerg. Electr. Power Syst.
,
1
.
17.
Gad
,
R.
,
Mahmoud
,
H.
,
Ookawara
,
S.
, and
Hassan
,
H.
,
2023
, “
Evaluation of Thermal Management of Photovoltaic Solar Cell Via Hybrid Cooling System of Phase Change Material Inclusion Hybrid Nanoparticles Coupled With Flat Heat Pipe
,”
J. Energy Storage
,
57
, p.
106185
.
18.
Alzgool
,
M.
,
2024
, “
Performance Enhancement by Cooling the PV Panels Using Phase Change Material (RT35): ANSYS Simulation and Experimental Investigation
,”
Int. J. Energy Prod. Manage.
,
9
(
2
), pp.
73
81
.
19.
Gad
,
R.
,
Mahmoud
,
H.
, and
Hassan
,
H.
,
2024
, “
4E Experimental Investigation of Concentrated Solar Cell Cooling Via System of Heat Dissipator-Phase Change Material
,”
Therm. Sci. Eng. Prog.
,
54
, p.
102794
.
20.
Ananda
,
G.
,
Hakim
,
M. D. N.
, and
Wulandari
,
R.
,
2024
, “
Comparative Study by Experiment of Design Cooling System Between Air Cooling and Water Spray Cooling Method for Optimization of Solar Photovoltaic
,”
Indones. J. Innov. Appl. Sci.
,
4
(
2
), pp.
133
140
.
21.
Jyani
,
L.
,
Sankhala
,
S. K.
,
Chaudhary
,
K.
, and
Purohit
,
K.
,
2024
, “
Experimental Investigation of Flexible Solar Cells Using Passive Cooling Technique in Hot and Dry Climate of Jodhpur
,”
J. Sol. Energy Res.
,
9
(
2
), pp.
1854
1869
.
22.
Sihem
,
B.
, and
Abdallah
,
M. S.
,
2024
, “
Numerical Study of a Solar PV/Thermal Collector Under Several Conditions in Algeria
,”
Renew. Energy Sustain. Dev.
,
10
(
2
), pp.
233
247
.
23.
Hazarika
,
P.
,
Shyam
,
S.
,
Kalita
,
P.
, and
Gaur
,
A.
,
2025
, “
Annual Energy Analysis of a Building Integrated Semi-transparent Photovoltaic Thermal Facade
,”
ASME J. Sol. Energy Eng.
,
147
(
3
), p.
034501
.
24.
Salem
,
H.
, and
Mina
,
E.
,
2024
, “
Effect of Nanoparticles Deposition on Cooling Performance of Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
146
(
2
), p.
021009
.
25.
Ahmed
,
I.
,
Farhin
,
H. A.
,
Hoque
,
M. A.
,
Miah
,
M. A. K.
,
Heme
,
S. A.
, and
Rahman
,
H.
,
2025
, “
Numerical Study on Uniform Passive Cooling Configurations for Photovoltaic Modules in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
147
(
4
), p.
041003
.
26.
Gupta
,
M.
,
Srivastava
,
R.
, and
Bisaria
,
H.
,
2015
, “
Potential of Jute Fibre Reinforced Polymer Composites: A Review
,”
Int. J. Fiber Text. Res.
,
5
(
3
), pp.
30
38
.
27.
Kumari
,
K.
,
Devegowda
,
S.
, and
Kushwaha
,
S.
,
2018
, “
Trend Analysis of Area, Production and Productivity of Jute in India
,”
Pharm. Innov. J.
,
7
(
12
), pp.
58
62
.
28.
Sarhaddi
,
F.
,
Farahat
,
S.
,
Ajam
,
H.
,
Behzadmehr
,
A.
, and
Adeli
,
M. M.
,
2010
, “
An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector
,”
Appl. Energy
,
87
(
7
), pp.
2328
2339
.
29.
Touti
,
E.
,
Masmali
,
M.
,
Fterich
,
M.
, and
Chouikhi
,
H.
,
2023
, “
Experimental and Numerical Study of the PVT Design Impact on the Electrical and Thermal Performances
,”
Case Stud. Therm. Eng.
,
43
, p.
102732
.
30.
Markvart
,
T.
, and
Castañer
,
L.
,
2018
, “Principles of Solar Cell Operation,”
McEvoy’s Handbook of Photovoltaics
,
T.
Markvart
, and
L.
Castener
, eds.,
Elsevier
, pp.
3
28
.
You do not currently have access to this content.