Abstract

The article explores the performance of an evacuated U-tube solar collector integrated with a parabolic reflector under extremely hot tropical conditions, both with and without the presence of particulate matter, using experimental and simulation approaches. Experimental results showed that at peak conditions of 1017-W/m2 solar intensity and 42 ℃ ambient temperature, the heat transfer fluid (HF) exhibited a temperature increase of 11.5 ℃, accompanied by a heat gain of 1100 W, with a flowrate ranging from 0.028 to 0.03 L/s and a U-tube contact area of nearly 0.18 m2. In these tropical conditions, the maximum thermal efficiency achieved was 66% without particulate matter and 61% with particulate matter treatment (PMT), which simulated the accumulation of particles on the evacuated tube's surface. The introduction of PMT on the evacuated tube's outer surface led to slight deteriorations, including a 2 ℃ reduction in HF temperature increase, a 200-W decrease in heat gain, and a 17% drop in thermal efficiency compared to the scenario without PMT. The study also includes case studies using two numerical models to assess the time required to reach a steady state and to understand the system's thermal behavior throughout the day, both with and without PMT. The analyses reveal that under peak solar conditions, a steady state is achieved in 117 s with PMT and 131 s without, at a flowrate between 0.026 and 0.028 L/s. Additionally, the impact of HF flowrate, solar intensity, and HF inlet temperature on thermal performance is examined, revealing intricate temperature patterns along the U-tube's radial and axial directions. Detailed 3D temperature contours for hourly variations on sunny days and transient analyses along the collector length are presented. These findings offer valuable insights for optimizing solar collector systems for extremely hot tropical climates.

References

1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
2.
Morrison
,
G. L.
,
Budihardjo
,
I.
, and
Behnia
,
M.
,
2004
, “
Water-in-Glass Evacuated Tube Solar Water Heaters
,”
Sol. Energy
,
76
(
1–3
), pp.
135
140
.
3.
Karimi Sadaghiyani
,
O.
,
Pourmahmoud
,
N.
, and
Mirzaee
,
I.
,
2013
, “
Numerical Simulation Coupled With MCRT Method to Study the Effect of Plug Diameter and Its Position on Outlet Temperature and the Efficiency of LS-2 Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041001
.
4.
Naik
,
B. K.
, and
Muthukumar
,
P.
,
2019
, “
Performance Assessment of Evacuated U-Tube Solar Collector: A Numerical Study
,”
Sādhanā
,
44
(
1
), pp.
1
13
.
5.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Mahian
,
O.
,
2015
, “
Progress and Latest Developments of Evacuated Tube Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
1038
1054
.
6.
Shah
,
L. J.
, and
Furbo
,
S.
,
2004
, “
Vertical Evacuated Tubular-Collectors Utilizing Solar Radiation From All Directions
,”
Appl. Energy
,
78
(
4
), pp.
371
395
.
7.
Ataee
,
S.
, and
Ameri
,
M.
,
2015
, “
Energy and Exergy Analysis of All-Glass Evacuated Solar Collector Tubes With Coaxial Fluid Conduit
,”
Sol. Energy
,
118
(
1
), pp.
575
591
.
8.
Baiju
,
V.
, and
Shajan
,
S.
,
2022
, “
Secondary Reflector and Receiver Positions for Uniform Heat Flux Distribution in Parabolic Trough Solar Thermal Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061006
.
9.
Naik
,
B. K.
,
Bhowmik
,
M.
, and
Muthukumar
,
P.
,
2019
, “
Experimental Investigation and Numerical Modelling on the Performance Assessments of Evacuated U-Tube Solar Collector Systems
,”
Renewable Energy
,
134
(
1
), pp.
1344
1361
.
10.
Kiran Naik
,
B.
,
Premnath
,
S.
, and
Muthukumar
,
P.
,
2021
, “
Performance Comparison of Evacuated U-Tube Solar Collector Integrated Parabolic Reflector With Conventional Evacuated U-Tube Solar Collector
,”
Sādhanā
,
46
(
3
), pp.
1
11
.
11.
Naik
,
B. K.
,
Varshney
,
A.
,
Muthukumar
,
P.
, and
Somayaji
,
C.
,
2016
, “
Modelling and Performance Analysis of U Type Evacuated Tube Solar Collector Using Different Working Fluids
,”
Energy Procedia
,
90
(
1
), pp.
227
237
.
12.
Mohapatra
,
A.
,
Tejes
,
P. K. S.
,
Gembali
,
C.
, and
Kiran Naik
,
B.
,
2023
, “
Design and Performance Analyses of Evacuated U-Tube Solar Collector Using Data-Driven Machine Learning Models
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011007
.
13.
Gao
,
Y.
,
Fan
,
R.
,
Zhang
,
X. Y.
,
An
,
Y. J.
,
Wang
,
M. X.
,
Gao
,
Y. K.
, and
Yu
,
Y.
,
2014
, “
Thermal Performance and Parameter Analysis of a U-Pipe Evacuated Solar Tube Collector
,”
Sol. Energy
,
107
(
1
), pp.
714
727
.
14.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
Elrefay
,
M. K.
,
2020
, “
Thermal Performance Improvement of the Modified Evacuated U-Tube Solar Collector Using Hybrid Storage Materials and Low-Cost Concentrators
,”
J. Energy Storage
,
29
(
1
), p.
101394
.
15.
Dehaj
,
M. S.
,
Rezaeian
,
M.
,
Mousavi
,
D.
,
Shamsi
,
S.
, and
Salarmofrad
,
M.
,
2021
, “
Efficiency of the Parabolic Through Solar Collector Using NiFe2O4/Water Nanofluid and U-Tube
,”
J. Taiwan Inst. Chem. Eng.
,
120
(
1
), pp.
136
149
.
16.
Kaya
,
H.
,
Arslan
,
K.
, and
Eltugral
,
N.
,
2018
, “
Experimental Investigation of Thermal Performance of an Evacuated U-Tube Solar Collector With ZnO/Etylene Glycol-Pure Water Nanofluids
,”
Renewable Energy
,
122
(
1
), pp.
329
338
.
17.
Yıldırım
,
E.
, and
Yurddaş
,
A.
,
2021
, “
Assessments of Thermal Performance of Hybrid and Mono Nanofluid U-Tube Solar Collector System
,”
Renewable Energy
,
171
(
1
), pp.
1079
1096
.
18.
Gholipour
,
S.
,
Afrand
,
M.
, and
Kalbasi
,
R.
,
2021
, “
Introducing Two Scenarios to Enhance the Vacuum U-Tube Solar Collector Efficiency by Considering Economic Criterion
,”
J. Taiwan Inst. Chem. Eng.
,
124
(
1
), pp.
228
237
.
19.
Kim
,
Y.
, and
Seo
,
T.
,
2007
, “
Thermal Performances Comparisons of the Glass Evacuated Tube Solar Collectors With Shapes of Absorber Tube
,”
Renewable Energy
,
32
(
5
), pp.
772
795
.
20.
Abokersh
,
M. H.
,
El-Morsi
,
M.
,
Sharaf
,
O.
, and
Abdelrahman
,
W.
,
2017
, “
On-Demand Operation of a Compact Solar Water Heater Based on U-Pipe Evacuated Tube Solar Collector Combined With Phase Change Material
,”
Sol. Energy
,
155
(
1
), pp.
1130
1147
.
21.
Nie
,
X.
,
Zhao
,
L.
,
Deng
,
S.
, and
Lin
,
X.
,
2017
, “
Experimental Study on Thermal Performance of U-Type Evacuated Glass Tubular Solar Collector With Low Inlet Temperature
,”
Sol. Energy
,
150
(
1
), pp.
192
201
.
22.
Ma
,
L.
,
Zhao
,
T.
,
Zhang
,
J.
, and
Zhao
,
D.
,
2016
, “
Numerical Study on the Heat Transfer Characteristics of Filled-Type Solar Collector With U-Tube
,”
Appl. Therm. Eng.
,
107
, pp.
642
652
.
23.
Hegazy
,
A. A.
,
2001
, “
Effect of Dust Accumulation on Solar Transmittance Through Glass Covers of Plate-Type Collectors
,”
Renewable Energy
,
22
(
4
), pp.
525
540
.
24.
Essa
,
M. A.
,
Asal
,
M.
,
Saleh
,
M. A.
, and
Shaltout
,
R. E.
,
2021
, “
A Comparative Study of the Performance of a Novel Helical Direct Flow U-Tube Evacuated Tube Collector
,”
Renewable Energy
,
163
(
1
), pp.
2068
2080
.
25.
Ali Sadat
,
S. A.
,
Faraji
,
J.
,
Nazififard
,
M.
, and
Ketabi
,
A.
,
2021
, “
The Experimental Analysis of Dust Deposition Effect on Solar Photovoltaic Panels in Iran's Desert Environment
,”
Sustainable Energy Technol. Assess.
,
47
(
1
), p.
101542
.
26.
Morrison
,
G. L.
,
Budihardjo
,
I.
, and
Behnia
,
M.
,
2005
, “
Measurement and Simulation of Flow Rate in a Water-in-Glass Evacuated Tube Solar Water Heater
,”
Sol. Energy
,
78
(
2
), pp.
257
267
.
27.
Hazami
,
M.
,
Kooli
,
S.
,
Naili
,
N.
, and
Farhat
,
A.
,
2013
, “
Long-Term Performances Prediction of an Evacuated Tube Solar Water Heating System Used for Single-Family Households Under Typical Nord-African Climate (Tunisia)
,”
Sol. Energy
,
94
(
1
), pp.
283
298
.
28.
Sobhansarbandi
,
S.
,
Martinez
,
P. M.
,
Papadimitratos
,
A.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2017
, “
Evacuated Tube Solar Collector With Multifunctional Absorber Layers
,”
Sol. Energy
,
146
(
1
), pp.
342
350
.
29.
Essa
,
M. A.
, and
Mostafa
,
N. H.
,
2017
, “
Theoretical and Experimental Study for Temperature Distribution and Flow Profile in All Water Evacuated Tube Solar Collector Considering Solar Radiation Boundary Condition
,”
Sol. Energy
,
142
(
1
), pp.
267
277
.
30.
Papadimitratos
,
A.
,
Sobhansarbandi
,
S.
,
Pozdin
,
V.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2016
, “
Evacuated Tube Solar Collectors Integrated With Phase Change Materials
,”
Sol. Energy
,
129
(
1
), pp.
10
19
.
31.
Feliński
,
P.
, and
Sekret
,
R.
,
2017
, “
Effect of a Low-Cost Parabolic Reflector on the Charging Efficiency of an Evacuated Tube Collector/Storage System With a PCM
,”
Sol. Energy
,
144
(
1
), pp.
758
766
.
32.
Kotb
,
A.
,
Elsheniti
,
M. B.
, and
Elsamni
,
O. A.
,
2019
, “
Optimum Number and Arrangement of Evacuated-Tube Solar Collectors Under Various Operating Conditions
,”
Energy Convers. Manage.
,
199
(
1
), p.
112032
.
33.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
34.
Gao
,
Y.
,
Zhang
,
Q.
,
Fan
,
R.
,
Lin
,
X.
, and
Yu
,
Y.
,
2013
, “
Effects of Thermal Mass and Flow Rate on Forced-Circulation Solar Hot-Water System: Comparison of Water-in-Glass and U-Pipe Evacuated-Tube Solar Collectors
,”
Sol. Energy
,
98
(
3
), pp.
290
301
.
35.
Ayompe
,
L. M.
, and
Duffy
,
A.
,
2013
, “
Thermal Performance Analysis of a Solar Water Heating System With Heat Pipe Evacuated Tube Collector Using Data From a Field Trial
,”
Sol. Energy
,
90
(
1
), pp.
17
28
.
36.
Liang
,
R.
,
Ma
,
L.
,
Zhang
,
J.
, and
Zhao
,
D.
,
2011
, “
Theoretical and Experimental Investigation of the Filled-Type Evacuated Tube Solar Collector With U Tube
,”
Sol. Energy
,
85
(
9
), pp.
1735
1744
.
37.
Ma
,
L.
,
Lu
,
Z.
,
Zhang
,
J.
, and
Liang
,
R.
,
2010
, “
Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector With U-Tube
,”
Build. Environ.
,
45
(
9
), pp.
1959
1967
.
38.
Núnez Bootello
,
J. P.
,
Schramm
,
M.
,
Silva Pérez
,
M.
, and
Doblaré Castellano
,
M.
,
2017
, “
Parametric Trough Solar Collector With Commercial Evacuated Receiver: Performance Comparison at Plant Level
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041014
.
You do not currently have access to this content.