Abstract

Deployment of the solar field of a concentrating solar power plant is one of many factors that are integral to the success of a project. Knowledge transfer from outside the industry is limited due to the unique nature of heliostats, which redirect sunlight to a receiver with high precision while maintaining a high level of reflectivity. Moreover, learning from project to project can be limited due to the site-specific nature of projects, as the market includes several developers, each with their own unique design. In this paper, we discuss the state of the art in heliostat field deployment. We cover all the key aspects of deployment from project assessment to a fully functioning system, which include site selection, layout development, supply chain, assembly, site preparation and construction, calibration, and operations and maintenance. We then perform a gap analysis on field deployment and recommend priorities for future research.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dindi
,
A.
,
Coddington
,
K.
,
Garofalo
,
J. F.
,
Wu
,
W.
, and
Zhai
,
H.
,
2022
, “
Policy-Driven Potential for Deploying Carbon Capture and Sequestration in a Fossil-Rich Power Sector
,”
Environ. Sci. Technol.
,
56
(
14
), pp.
9872
9881
.
2.
Yuan
,
Z.
,
Eden
,
M. R.
, and
Gani
,
R.
,
2016
, “
Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes
,”
Ind. Eng. Chem. Res.
,
55
(
12
), pp.
3383
3419
.
3.
Halabi
,
M. A.
,
Al-Qattan
,
A.
, and
Al-Otaibi
,
A.
,
2015
, “
Application of Solar Energy in the Oil Industry—Current Status and Future Prospects
,”
Renew. Sustain. Energy Rev.
,
43
, pp.
296
314
.
4.
Moorthy
,
K.
,
Patwa
,
N.
, and
Gupta
,
Y.
,
2019
, “
Breaking Barriers in Deployment of Renewable Energy
,”
Heliyon
,
5
(
1
), pp.
1
23
.
5.
Abdelsalam
,
E.
,
Almomani
,
F.
, and
Ibrahim
,
S.
,
2022
, “
A Novel Hybrid Solar Chimney Power Plant: Performance Analysis and Deployment Feasibility
,”
Energy Sci. Eng.
,
10
(
9
), pp.
3559
3579
.
6.
Higier
,
A.
,
Arbide
,
A.
,
Awaad
,
A.
,
Eiroa
,
J.
,
Miller
,
J.
,
Munroe
,
N.
,
Ravinet
,
A.
, and
Redding
,
B.
,
2013
, “
Design, Development and Deployment of a Hybrid Renewable Energy Powered Mobile Medical Clinic With Automated Modular Control System
,”
Renew. Energy
,
50
, pp.
847
857
.
7.
Papaioannou
,
I. T.
,
Purvins
,
A.
,
Shropshire
,
D.
, and
Carlsson
,
J.
,
2014
, “
Role of a Hybrid Energy System Comprising a Small/Medium-Sized Nuclear Reactor and a Biomass Processing Plant in a Scenario With a High Deployment of Onshore Wind Farms
,”
J. Energy Eng.
,
140
(
1
), p.
04013005
.
8.
Soria
,
R.
,
Portugal-Pereira
,
J.
,
Szklo
,
A.
,
Milani
,
R.
, and
Schaeffer
,
R.
,
2015
, “
Hybrid Concentrated Solar Power (CSP)–Biomass Plants in a Semiarid Region: A Strategy for CSP Deployment in Brazil
,”
Energy Policy
,
86
, pp.
57
72
.
9.
Thonig
,
R.
,
Gilmanova
,
A.
, and
Lilliestam
,
J.
,
2023
, “
CSP.Guru 2023-07-01
,” Zenodo.
10.
Lilliestam
,
J.
,
Labordena
,
M.
,
Patt
,
A.
, and
Pfenninger
,
S.
,
2017
, “
Empirically Observed Learning Rates for Concentrating Solar Power and Their Responses to Regime Change
,”
Nat. Energy
,
2
(
7
), pp.
1
6
.
11.
Mehos
,
M.
,
Price
,
H.
,
Cable
,
R.
,
Kearney
,
D.
,
Kelly
,
B.
,
Kolb
,
G.
, and
Morse
,
F.
,
2020
, “
Concentrating Solar Power Best Practices Study
,” Technical Report No. NREL/TP-5500-75763, National Renewable Energy Laboratory, Golden, CO (United States), and Solar Dynamics, LLC, Denver, CO (United States).
12.
Biboum
,
A. C.
, and
Yilanci
,
A.
,
2021
, “
Thermodynamic and Economic Assessment of Solar Thermal Power Plants for Cameroon
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041004
.
13.
Yadav
,
P.
,
Davies
,
P. J.
, and
Sarkodie
,
S. A.
,
2019
, “
The Prospects of Decentralised Solar Energy Home Systems in Rural Communities: User Experience, Determinants, and Impact of Free Solar Power on the Energy Poverty Cycle
,”
Energy Strat. Rev.
,
26
, p.
100424
.
14.
Groom
,
N.
,
2022
, “
Special Report: U.S. Solar Expansion Stalled by Rural Land-Use Protests
,” URL: https://www.reuters.com/world/us/us-solar-expansion-stalled-by-rural-land-use-protests-2022-04-07/, Accessed April 15, 2023.
15.
HelioCSP
, “
South Africa’s Redstone Concentrated Solar Power Project Gets Power Purchase Agreement
,” https://helioscsp.com/south-africas-redstone-concentrated-solar-power-project-gets-power-purchase-agreement/, Accessed October 6, 2023.
16.
HelioCSP
, “
100 MW Redstone Concentrated Solar Power With 12 h Daily Thermal Energy Storage Closes Financing
,” https://helioscsp.com/100-mw-redstone-concentrated-solar-power-with-12-hours-daily-thermal-energy-storage-closes-financing/, Accessed October 6, 2023.
17.
HelioCSP
, “
Redstone Concentrated Solar Power Project in South Africa to Start Operations in 2024
,” https://helioscsp.com/redstone-concentrated-solar-power-project-in-south-africa-redstone-concentrated-solar-power-project-to-start-operations-in-2024/, Accessed October 6, 2023.
18.
The Center for Land Use Interpretation
,
2023
, “
Land Use Database: Solar Two Experimental Solar Facility Site, California
,” https://clui.org/ludb/site/solar-two-experimental-solar-facility-site, Accessed April 15, 2023.
19.
Masoom
,
A.
,
Kosmopoulos
,
P.
,
Bansal
,
A.
,
Gkikas
,
A.
,
Proestakis
,
E.
,
Kazadzis
,
S.
, and
Amiridis
,
V.
,
2021
, “
Forecasting Dust Impact on Solar Energy Using Remote Sensing and Modeling Techniques
,”
Sol. Energy
,
228
, pp.
317
332
.
20.
Zolan
,
A.
, and
Mehos
,
M.
,
2022
, “
Wash Vehicle Fleet Sizing for Contingency Planning Against Dust Storms
,”
AIP Conf. Proc.
,
2445
(
1
), p.
080012
. Proceedings of SolarPACES 2020, Sept. 27–Oct. 1, 2020.
21.
Ho
,
C. K.
,
Sims
,
C. A.
,
Yellowhair
,
J.
, and
Wendelin
,
T.
,
2018
, “
Tools to Address Glare and Avian Flux Hazards From Solar Energy Systems
,” Technical Report No. SAND2018-10983, Sandia National Laboratories, Albuquerque, NM.
22.
Hamilton
,
W. T.
,
Wagner
,
M. J.
, and
Zolan
,
A. J.
,
2022
, “
Demonstrating SolarPILOT’s Python Application Programmable Interface Through Heliostat Optimal Aimpoint Strategy Use Case
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
030906
.
23.
Wendelin
,
T.
,
2003
, “
SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics
,”
Proceedings of the ASME 2003 International Solar Energy Conference
,
Kohala Coast, HI
,
Mar. 15–18, 2003
, pp.
253
260
.
24.
Blackmon
,
J.
,
2021
, “Chapter 16: Heliostat Size Optimization for Central Receiver Solar Power Plants,”
Concentrating Solar Power Technology
,
Woodhead Publishing
,
Cambridge
.
25.
Bendjebbas
,
H.
,
Abdellah-ElHadj
,
A.
, and
Abbas
,
M.
,
2016
, “
Full-Scale, Wind Tunnel and CFD Analysis Methods of Wind Loads on Heliostats: A Review
,”
Renew. Sustain. Energy Rev.
,
54
, pp.
452
472
.
26.
Emes
,
M.
,
Jafari
,
A.
,
Pfahl
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2021
, “
A Review of Static and Dynamic Heliostat Wind Loads
,”
Sol. Energy
,
225
, pp.
60
82
.
27.
Durán
,
R. L.
,
Hinojosa
,
J. F.
, and
Sosa-Flores
,
P.
,
2022
, “
A Novel Approach for Computational Fluid Dynamics Analysis of Mean Wind Loads on Heliostats
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061008
.
28.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments Due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
, pp.
604
617
.
29.
Cart
,
J.
,
2012
, “
Saving Desert Tortoises is a Costly Hurdle for Solar Projects
,” Los Angeles Times, https://www.latimes.com/archives/la-xpm-2012-mar-04-la-me-solar-tortoise-20120304-story.html. Accessed October 6, 2023.
30.
Turchi
,
C. S.
,
Gage
,
S.
,
Martinek
,
J.
,
Jape
,
S.
,
Armijo
,
K.
,
Coventry
,
J.
,
Pye
,
J.
, et al
,
2021
, “
CSP Gen3: Liquid-Phase Pathway to SunShot
,” Technical Report No. NREL/TP-5700-79323, National Renewable Energy Laboratory, Golden, CO (United States); Sandia National Laboratories, Albuquerque, NM (United States); Australian National University, Canberra, ACT (Australia); Commonwealth Scientific and Industrial Research Organization (CSIRO), Newcastle, NSW (Australia); Queensland Univ. of Technology, Brisbane (Australia).
31.
Buck
,
R.
, and
Sment
,
J.
,
2023
, “
Techno-Economic Analysis of Multi-Tower Solar Particle Power Plants
,”
Sol. Energy
,
254
, pp.
112
122
.
32.
Kurup
,
P.
,
Akar
,
S.
,
Augustine
,
C.
, and
Feldman
,
D.
,
2022
, “
Initial Heliostat Supply Chain Analysis
,” Technical Report No. NREL/TP-7A40-83569, National Renewable Energy Laboratory, Golden, CO.
33.
Mitchell
,
R.
, and
Zhu
,
G.
,
2020
, “
A Non-Intrusive Optical (NIO) Approach to Characterize Heliostats in Utility-Scale Power Tower Plants: Methodology and In-Situ Validation
,”
Sol. Energy
,
209
, pp.
431
445
.
34.
Yellowhair
,
J.
,
Apostolopoulos
,
P. A.
,
Small
,
D. E.
,
Novick
,
D.
, and
Mann
,
M.
,
2022
, “
Development of an Aerial Imaging System for Heliostat Canting Assessments
,”
AIP Conf. Proc.
,
2445
(
1
), p.
120024
. Proceedings of SolarPACES 2020, Sept. 27–Oct. 1, 2020.
35.
Pacheco
,
J. E.
,
2001
, “
Demonstration of Solar-Generated Electricity on Demand: The Solar two Project
,”
ASME J. Sol. Energy Eng.
,
123
(
1
), p.
5
.
36.
Arden
,
W. M.
, “
Reflective Materials Evaluation. Final Report, Task III, July 1975–April 1977
,” Technical Report No. COO-2699-5, Sheldahl, Inc., Northfield, MN.
37.
Binotti
,
M.
,
De Giorgi
,
P.
,
Sanchez
,
D.
, and
Manzolini
,
G.
,
2016
, “
Comparison of Different Strategies for Heliostats Aiming Point in Cavity and External Tower Receivers
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
021008
.
38.
Kurup
,
K.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
, “
Cost Update: Commercial and Advanced Heliostat Collectors
,” Technical Report No. NREL/TP-7A40-80482, National Renewable Energy Laboratory, Golden, CO.
39.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al
,
2022
, “
Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power
,” Technical Report No. NREL/TP-5700-83041, National Renewable Energy Laboratory, Golden, CO.
40.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al
,
2023
, “
HelioCon: A Roadmap for Advanced Heliostat Technologies for Concentrating Solar Power
,”
Sol. Energy
,
264
, p.
111917
.
41.
Sment
,
J.
,
Zolan
,
A.
, and
Zhu
,
G.
,
2023
, “
Status Quo of Heliostat Field Deployment Processes
,”
Proceedings of ASME 17th International Conference on Sustainable Energy
,
Washington, D.C.
,
July 10–12, 2023
, Energy Sustainability,
87189
,
V001T05
.
American Society of Mechanical Engineers
.
You do not currently have access to this content.