Abstract

The layout of multiple natural draft dry cooling towers could have a significant influence on the performance of the cooling system in concentrated solar power (CSP) plants; however, this has never been quantified. Hence, this work used computational fluid dynamics (CFD) modeling to analyze the cooling capacity of two short natural draft dry cooling towers (NDDCTs) on a common site for a range of tower spacings, wind-speeds, and wind incidence angles. The results show that the cooling performance of the towers is a strong function of tower spacing and their orientation with respect to the wind direction. It was found that when the wind came at a 90-deg wind incidence angle (i.e., normal to a line drawn between the two towers), their cooling capacity was improved at tower spacings of less than 1.8 tower diameters (1.8D), though for the other tower spacings, there was no interaction between the towers. However, with the wind at 45 deg to the towers, the flow around the towers resulted in a decrease in their cooling capacity at tower spacings of 1.8D and 2.6D. Most interestingly, it was found that orienting the towers in line with the prevailing wind direction delivered improvements in the cooling capacity of up to 30%. This is due to the windward tower acting as a passive windbreak. Hence, as CSP plant capacity is increased, and additional cooling towers are required, these should be placed close to any existing tower and oriented along the line of the prevailing winds.

References

1.
Zhao
,
Y.
,
Sun
,
F.
,
Li
,
Y.
,
Long
,
G.
, and
Yang
,
Z.
,
2015
, “
Numerical Study on the Cooling Performance of Natural Draft Dry Cooling Tower With Vertical Delta Radiators Under Constant Heat Load
,”
Appl. Energy
,
149
, pp.
225
237
.
2.
Zhao
,
Y. B.
,
Long
,
G.
,
Sun
,
F.
,
Li
,
Y.
, and
Zhang
,
C.
,
2015
, “
Numerical Study on the Cooling Performance of Dry Cooling Tower With Vertical Two-Pass Column Radiators Under Crosswind
,”
Appl. Therm. Eng.
,
75
, pp.
1106
1117
.
3.
Al-Waked
,
R.
, and
Behnia
,
M.
,
2004
, “
The Performance of Natural Draft Dry Cooling Towers Under Crosswind: CFD Study
,”
Int. J. Energy Res.
,
28
(
2
), pp.
147
161
.
4.
Hooman
,
K.
,
2015
, “
Theoretical Prediction With Numerical and Experimental Verification to Predict Crosswind Effects on the Performance of Cooling Towers
,”
Heat Transf. Eng.
,
36
(
5
), pp.
480
487
.
5.
Ma
,
H.
,
Si
,
F.
,
Kong
,
Y.
,
Zhu
,
K.
, and
Yan
,
W.
,
2015
, “
A New Theoretical Method for Predicating the Part-Load Performance of Natural Draft Dry Cooling Towers
”.
Appl. Therm. Eng.
,
91
, pp.
1106
1115
.
6.
Su
,
M. D.
,
Tang
,
G. F.
, and
Fu
,
S.
,
1999
, “
Numerical Simulation of Fluid Flow and Thermal Performance of a Dry-Cooling Tower Under Cross Wind Condition
,”
J. Wind Eng. Ind. Aerodyn.
,
79
(
3
), pp.
289
306
.
7.
Yuan
,
L.
,
Zhu
,
J.
,
Li
,
T.
,
Fan
,
H.
, and
Lu
,
X.
,
2015
, “
Numerical Simulation of Flow and Heat Transfer Characteristics in Solar Enhanced Natural Draft Dry Cooling Tower
,”
Appl. Therm. Eng.
,
87
, pp.
98
105
.
8.
Zou
,
Z.
,
Guan
,
Z.
,
Gurgenci
,
H.
, and
Lu
,
Y.
,
2012
, “
Solar Enhanced Natural Draft Dry Cooling Tower for Geothermal Power Applications
,”
Solar Energy
,
86
(
9
), pp.
2686
2694
.
9.
Zou
,
Z.
,
Guan
,
Z.
, and
Gurgenci
,
H.
,
2013
, “
Optimization Design of Solar Enhanced Natural Draft Dry Cooling Tower
,”
Energy Convers. Manag.
,
76
, pp.
945
955
.
10.
Zou
,
Z.
,
Guan
,
Z.
, and
Gurgenci
,
H.
,
2014
, “
Numerical Simulation of Solar Enhanced Natural Draft Dry Cooling Tower
,”
Solar Energy
,
101
, pp.
8
18
.
11.
Ghasemi Zavaragh
,
H.
,
Ceviz
,
M. A.
, and
Shervani Tabar
,
M. T.
,
2016
, “
Analysis of Windbreaker Combinations on Steam Power Plant Natural Draft Dry Cooling Towers
,”
Appl. Therm. Eng.
,
99
, pp.
550
559
.
12.
Goodarzi
,
M.
, and
Keimanesh
,
R.
,
2013
, “
Heat Rejection Enhancement in Natural Draft Cooling Tower Using Radiator-Type Windbreakers
,”
Energy Convers. Manag.
,
71
, pp.
120
125
.
13.
Lu
,
Y.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Hooman
,
K.
,
He
,
S.
, and
Bharathan
,
D.
,
2015
, “
Experimental Study of Crosswind Effects on the Performance of Small Cylindrical Natural Draft Dry Cooling Towers
,”
Energy Convers Manag.
,
91
, pp.
238
248
.
14.
Lu
,
Y.
,
Gurgenci
,
H.
,
Guan
,
Z.
, and
He
,
S.
,
2014
, “
The Influence of Windbreak Wall Orientation on the Cooling Performance of Small Natural Draft Dry Cooling Towers
,”
Int. J. Heat Mass Transf.
,
79
, pp.
1059
1069
.
15.
Chen
,
L.
,
Yang
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Performance Improvement of Natural Draft Dry Cooling System by Interior and Exterior Windbreaker Configurations
,”
Int. J. Heat Mass Transf.
,
96
, pp.
42
63
.
16.
Seifi
,
A. R.
,
Akbari
,
O. A.
,
Alrashed
,
A. A. A. A.
,
Afshary
,
F.
,
Shabani
,
G. A. S.
,
Seifi
,
R.
,
Goodrazi
,
M.
, and
Pourfattah
,
F.
,
2018
, “
Effects of External Wind Breakers of Heller Dry Cooling System in Power Plants
,”
Appl. Therm. Eng.
,
130
, pp.
1124
1134
.
17.
Lu
,
Y.
,
Guan
,
Z.
,
Gurgenci
,
H.
, and
Zou
,
Z.
,
2013
, “
Windbreak Walls Reverse the Negative Effect of Crosswind in Short Natural Draft Dry Cooling Towers Into a Performance Enhancement
,”
Int. J. Heat Mass Transf.
,
63
, pp.
162
170
.
18.
Li
,
X.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Lu
,
Y.
, and
He
,
S.
,
2016
, “
Simulation of the UQ Gatton Natural Draft Dry Cooling Tower
,”
Appl. Therm. Eng.
,
105
, pp.
1013
1020
.
19.
Li
,
X.
,
Gurgenci
,
H.
,
Guan
,
Z.
,
Wang
,
X.
, and
Duniam
,
S.
,
2017
, “
Measurements of Crosswind Influence on a Natural Draft Dry Cooling Tower for a Solar Thermal Power Plant
,”
Appl. Energy
,
206
, pp.
1169
1183
.
20.
Li
,
X.
,
Duniam
,
S.
,
Gurgenci
,
H.
,
Guan
,
Z.
, and
Veeraragavan
,
A.
,
2017
, “
Full Scale Experimental Study of a Small Natural Draft Dry Cooling Tower for Concentrating Solar Thermal Power Plant
,”
Appl. Energy
,
193
, pp.
15
27
.
21.
Sun
,
T. F.
,
Gu
,
Z. F.
,
Zhou
,
L. M.
,
Li
,
P. H.
, and
Cai
,
G. L.
,
1992
, “
Full-Scale Measurement and Wind-Tunnel Testing of Wind Loading on Two Neighboring Cooling Towers
,”
J. Wind. Eng. Ind. Aerodyn.
,
43
(
1–3
), pp.
2213
2224
.
22.
Irtaza
,
H.
,
Ahmad
,
S.
, and
Pandey
,
T.
,
2011
, “
2D Study of Wind Forces Around Multiple Cooling Towers Using Computational Fluid Dynamics
,”
Int. J. Eng. Sci. Technol.
,
3
(
6
), pp.
116
134
.
23.
Wu
,
F. H. Y.
, and
Koh
,
R. C. Y.
,
1977
, “
Mathematical Model for Multiple Cooling Tower Plumes
”,
W.M. Keck Lab. of Hydraulics and Water Resources, California Institute of Technology
,
Pasadena, CA
. Report No. KH-R-37.
24.
Zhai
,
Z.
, and
Fu
,
S.
,
2006
, “
Improving Cooling Efficiency of Dry-Cooling Towers Under Cross-Wind Conditions by Using Wind-Break Methods
,”
Appl. Therm. Eng.
,
26
(
10
), pp.
1008
1017
.
25.
Khamooshi
,
M.
,
2019
, “
The Effect of Wind on Multiple, Short, Natural-Draft Dry Cooling Towers
,”
Ph.D. thesis
,
Auckland University of Technology
,
Auckland, New Zealand
.
26.
Wu
,
X. P.
,
Yang
,
L. J.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2014
, “
Flow and Heat Transfer Characteristics of Indirect Dry Cooling System With Horizontal Heat Exchanger A-Frames at Ambient Winds
,”
Int. J. Therm. Sci.
,
79
, pp.
161
175
.
27.
Lu
,
Y.
,
Klimenko
,
A.
,
Russell
,
H.
,
Dai
,
Y.
,
Warner
,
J.
, and
Hooman
,
K.
,
2018
, “
A Conceptual Study on Air Jet-Induced Swirling Plume for Performance Improvement of Natural Draft Cooling Towers
,”
Appl. Energy
,
217
, pp.
496
508
.
28.
Liao
,
H. T.
,
Yang
,
L. J.
,
Wu
,
X. P.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2016
, “
Impacts of Tower Spacing on Thermo-Flow Characteristics of Natural Draft Dry Cooling System
,”
Int. J. Therm. Sci.
,
102
, pp.
168
184
.
29.
Li
,
X.
,
Xia
,
L.
,
Gurgenci
,
H.
, and
Guan
,
Z.
,
2017
, “
Performance Enhancement for the Natural Draft Dry Cooling Tower Under Crosswind Condition by Optimizing the Water Distribution
,”
Int. J. Heat Mass Transf.
,
107
, pp.
271
280
.
You do not currently have access to this content.