Abstract

The roughness geometry has been introduced to improve the rate of heat transfer in a solar air heater duct. In the current work, circular and triangular shape geometries are used as roughness elements in the rectangular channel to enhance the thermal performance of reversed flow solar air heater (RFSAH). The important parameters selected for the research are Reynolds number (Re = 5000–18,000 (5 values)), pitch ratio (P/e = 4–12 (5 values)), and height ratio (e/D = 0.0392–0.1571 (4 values)). A 2D-computational fluid dynamics (CFD) model was developed using ansys (fluent 2022r1), and simulation was performed using the kε (RNG) turbulence model and validated with one set of experimental results for smooth duct and previous research. The findings revealed that the highest value of heat transfer was augmented about 2.18 times and 2.35 times for circular and triangular roughness geometry, respectively, as compared to the smooth channel at a Reynolds number of 12,000. The thermohydraulic performance factor (TPF) is 1.58 and 1.7 at pitch ratios of 6 and 5 for circular and triangular roughness geometry respectively, at Re of 12,000.

References

1.
Singh
,
V. P.
,
Jain
,
S.
,
Karn
,
A.
,
Kumar
,
A.
,
Dwivedi
,
G.
,
Meena
,
C. S.
,
Dutt
,
N.
, and
Ghosh
,
A.
,
2022
, “
Recent Developments and Advancements in Solar Air Heaters: A Detailed Review
,”
Sustainability
,
14
(
19
), p.
12149
.
2.
Jangde
,
P. K.
,
Singh
,
A.
, and
Arjunan
,
T. V.
,
2022
, “
Efficient Solar Drying Techniques: A Review
,”
Environ. Sci. Pollut. Res.
,
29
(
34
), pp.
50970
50983
.
3.
Zhang
,
P.
, and
Jin
,
Q.
,
2022
, “
Evolution, Status, and Trends of Exergy Research: A Systematic Analysis During 1997–2020
,”
Environ. Sci. Pollut. Res.
,
29
(
49
), pp.
73769
73794
.
4.
Abbas
,
S.
,
Yuan
,
Y.
,
Hassan
,
A.
,
Zhou
,
J.
,
Ji
,
W.
,
Yu
,
T.
,
Rehman
,
U. U.
, and
Yousuf
,
S.
,
2022
, “
Design a Low-Cost, Medium-Scale, Flat Plate Solar Air Heater: An Experimental and Simulation Study
,”
J. Energy Storage
,
56
(Part A), p.
105858
.
5.
Dwivedi
,
A.
,
Mishra
,
H.
, and
Nagrath
,
V.
,
2021
, “A Review on Different Performance Enhancement Techniques for Solar Air Heaters,”
Recent Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering
,
M.
Muzammil
,
A.
Chandra
,
P. K.
Kankar
, and
H.
Kumar
, eds.,
Springer
,
Singapore
, pp.
1
9
.
6.
Sharma
,
S. L.
, and
Debbarma
,
A.
,
2022
, “
A Review on Thermal Performance and Heat Transfer Augmentation in Solar Air Heater
,”
Int. J. Sustainable Energy
,
41
(
11
), pp.
1973
2019
.
7.
Varun
,
Saini
,
R. P.
, and
Singal
,
S. K.
,
2007
, “
A Review on Roughness Geometry Used in Solar Air Heaters
,”
Sol. Energy
,
81
(
11
), pp.
1340
1350
.
8.
Prasad
,
B. N.
,
2013
, “
Thermal Performance of Artificially Roughened Solar Air Heaters
,”
Sol. Energy
,
91
, pp.
59
67
.
9.
Kumar
,
R.
,
Kumar
,
A.
, and
Varun
,
2017
, “
Computational Fluid Dynamics-Based Study for Analyzing Heat Transfer and Friction Factor in Semi-Circular Rib-Roughened Equilateral Triangular Duct
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
4
), pp.
761
722
.
10.
Boulemtafes-Boukadoum
,
A.
, and
Benzaoui
,
A.
,
2014
, “
CFD Based Analysis of Heat Transfer Enhancement in Solar Air Heater Provided With Transverse Rectangular Ribs
,”
Energy Procedia
,
50
, pp.
761
772
.
11.
Al-Shamani
,
A. N.
,
Sopian
,
K.
,
Mohammed
,
H. A.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Abed
,
A. M.
,
2015
, “
Enhancement Heat Transfer Characteristics in the Channel With Trapezoidal Rib–Groove Using Nanofluids
,”
Case Stud. Therm. Eng.
,
5
, pp.
48
58
.
12.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
13.
Kumar
,
A.
, and
Kim
,
M. H.
,
2016
, “
Heat Transfer and Fluid Flow Characteristics in Air Duct With Various V-Pattern Rib Roughness on the Heated Plate: A Comparative Study
,”
Energy
,
103
, pp.
75
85
.
14.
Rao
,
Y.
,
Chen
,
P.
, and
Wan
,
C.
,
2016
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on the Surface With Micro W-Shaped Ribs
,”
Int. J. Heat Mass Transfer
,
93
, pp.
683
694
.
15.
Bharadwaj
,
G.
,
Kaushal
,
M.
, and
Goel
,
V.
,
2013
, “
Heat Transfer and Friction Characteristics of an Equilateral Triangular Solar Air Heater Duct Using Inclined Continuous Ribs as Roughness Element on the Absorber Plate
,”
Int. J. Sustainable Energy
,
32
(
6
), pp.
515
530
.
16.
Chaube
,
A.
,
Gupta
,
S.
, and
Verma
,
P.
,
2014
, “
Heat Transfer and Friction Factor Enhancement in a Square Channel Having Integral Inclined Discrete Ribs on Two Opposite Walls
,”
J. Mech. Sci. Technol.
,
28
(
5
), pp.
1927
1937
.
17.
Pandey
,
N. K.
, and
Bajpai
,
V. K.
,
2016
, “
Experimental Investigation of Heat Transfer and Friction Characteristics of Arc-Shaped Roughness Elements Having Central Gaps on the Absorber Plate of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p. 041005.
18.
Bhargava
,
A. K.
,
Garg
,
H. P.
, and
Sharma
,
V. K.
,
1983
, “
A Two-Pass Solar Air Heater
,”
Energy
,
8
(
4
), pp.
267
276
.
19.
Persad
,
P.
, and
Satcunanathan
,
S.
,
1983
, “
The Thermal Performance of the Two-Pass, Two-Glass-Cover Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
105
(
3
), pp.
254
258
.
20.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2022
, “
Implementation of Hybrid Rib-Turbulators on the Thermal Performance of Solar Air Heater Duct: A Collective Review
,”
Sustain. Energy Technol. Assess.
,
52
(Part D), p.
102345
.
21.
Kumar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2009
, “
Heat Transfer and Friction Correlations for Artificially Roughened Solar Air Heater Duct With Discrete W-Shaped Ribs
,”
Energy Convers. Manage.
,
50
(
8
), pp.
2106
2117
.
22.
Ghritlahre
,
H. K.
,
Verma
,
M.
,
Parihar
,
J. S.
,
Mondloe
,
D. S.
, and
Agrawal
,
S.
,
2022
, “
A Detailed Review of Various Types of Solar Air Heaters Performance
,”
Sol. Energy
,
237
, pp.
173
195
.
23.
Chaurasia
,
S.
,
Goel
,
V.
, and
Debbarma
,
A.
,
2023
, “
Impact of Hybrid Roughness Geometry on Heat Transfer Augmentation in Solar Air Heater: A Review
,”
Sol. Energy
,
255
, pp.
435
459
.
24.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1016
1039
.
25.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2017
, “
A Parametric Analysis of Rectangular Rib Roughened Triangular Duct Solar Air Heater Using Computational Fluid Dynamics
,”
Sol. Energy
,
157
, pp.
1095
1107
.
26.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renewable Energy
,
115
, pp.
824
835
.
27.
Singh
,
I.
, and
Singh
,
S.
,
2018
, “
CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements
,”
Sol. Energy
,
162
, pp.
442
453
.
28.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.
29.
Kumar
,
D.
,
Mahanta
,
P.
, and
Kalita
,
P.
,
2021
, “
Performance Analysis of a Solar Air Heater Modified With Zig-Zag Shaped Copper Tubes Using Energy-Exergy Methodology
,”
Sustain. Energy Technol. Assess.
,
46
, p.
101222
.
30.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Turbulent Flows Through an Artificially Roughened Solar Air Heater
,”
Numer. Heat Transfer, Part A
,
65
(
7
), pp.
679
698
.
31.
Yadav
,
A. S.
,
Shukla
,
O. P.
,
Sharma
,
A.
, and
Khan
,
I. A.
,
2022
, “
CFD Analysis of Heat Transfer Performance of Ribbed Solar Air Heater
,”
Mater. Today: Proc.
,
62
(Part 3), pp.
1413
1419
.
32.
Kumar
,
D.
, and
Layek
,
A.
,
2023
, “
Heat Transfer Augmentation of a Solar Air Heater Using a Twisted V-Shaped Staggered Rib Over the Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021013
.
33.
Jain
,
S. K.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2022
, “
Experimental Investigation and Optimizing the Parameters of a Solar Air Heater Having Broken Arc-Shaped Ribs Using Hybrid Entropy-VIKOR Technique
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061013
.
34.
Karwa
,
R.
,
2022
, “
Enhanced Heat Transfer Performance of Multiple Triangular Air Flow Passages in Parallel With Inclined Fins for Flat Plate Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051003
.
35.
Shalaby
,
S. M.
,
Kabeel
,
A. E.
,
El-Bialy
,
E.
, and
Elfakharany
,
M. K.
,
2020
, “
Investigation and Improvement of Thermal Performance of a Solar Air Heater Using Extended Surfaces Through the Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011012
.
36.
Kumar
,
A.
,
Singh
,
A. P.
,
Akshayveer
, and
Singh
,
O. P.
,
2022
, “
Effect of Channel Designs and Its Optimization for Enhanced Thermo-Hydraulic Performance of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051009
.
37.
Katoch
,
H.
,
Rathore
,
S. K.
, and
Mund
,
C.
,
2023
, “
Numerical Investigation of Heat Transfer Augmentation of a Curved Solar Air Heater With Inverted T-Shaped Ribs
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031004
.
38.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renewable Energy
,
31
(
3
), pp.
317
331
.
39.
Kumar
,
A.
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2022
, “
Investigations for Efficient Design of a New Counter Flow Double-Pass Curved Solar Air Heater
,”
Renewable Energy
,
185
, pp.
759
770
.
40.
Yadav
,
S.
, and
Saini
,
R. P.
,
2020
, “
Numerical Investigation on the Performance of a Solar Air Heater Using Jet Impingement With Absorber Plate
,”
Sol. Energy
,
208
, pp.
236
248
.
41.
Hill
,
J. E.
, and
Streed
,
E. R.
,
1976
, “
A Method of Testing for Rating Solar Collectors Based on Thermal Performance
,”
Sol. Energy
,
18
(
5
), pp.
421
429
.
42.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,”
Int. J. Heat Mass Transfer
,
14
(
4
), pp.
601
617
.
43.
Abo-Elfadl
,
S.
,
Yousef
,
M. S.
,
El-Dosoky
,
M. F.
, and
Hassan
,
H.
,
2021
, “
Energy, Exergy, and Economic Analysis of Tubular Solar Air Heater With Porous Material: An Experimental Study
,”
Appl. Therm. Eng.
,
196
, p.
117294
.
44.
McAdams
,
W. H.
,
1942
,
Heat Transmission
,
McGraw-Hill Book Co.
,
New York
.
45.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
1994
,
Introduction to Fluid Mechanics
,
John Wiley & Sons Inc.
,
New York
.
You do not currently have access to this content.