Abstract

Maintaining the temperature of the photovoltaic (PV) panel within the described standard helps in achieving higher power conversion efficiency. To regulate the PV temperature, phase change material (PCM)-based cooling techniques have been proposed in several literature. However, most of the studies utilize organic PCMs whose low thermal conductivity confines their potential. Thus, in the proposed work, the rear side of the 20 Wp PV panel is coated with hydrated salt-based PCM and is integrated with an aluminum sheet (PV–PCM–Al) to increase the thermal conductivity of the system. The effect of the PV–PCM–Al panel in enhancing the PV efficiency is realized by comparing it with a standard uncooled PV panel. This concept was experimented under direct sunlight for about a week in Chennai, the southern part of India. To perceive the performance enhancement, thermal images were taken for both the cooled and uncooled PV panels. In addition, open-circuit voltage, short-circuit current, and power output were measured. The experimentation is also backed up by numerical simulations to understand the heat transfer characteristic features of the designed integrated PCM and aluminum cooling system. The experimentation results highlight that a maximum increase of about 7.67% in the PV efficiency was obtained using a cooled PV panel when compared to an uncooled PV panel. A maximum increase of 7.34% in the open-circuit voltage and a maximum drop of 4.6 °C in the PV temperature were obtained.

References

1.
Shukla
,
A.
,
Kant
,
K.
,
Sharma
,
A.
, and
Biwole
,
P. H.
,
2017
, “
Cooling Methodologies of Photovoltaic Module for Enhancing Electrical Efficiency: A Review
,”
Sol. Energy Mater. Sol. Cells
,
160
, pp.
275
286
.
2.
Elavarasan
,
R. M.
,
2019
, “
The Motivation for Renewable Energy and Its Comparison With Other Energy Sources: A Review
,”
Eur. J. Sustainable Dev. Res.
,
3
(
1
), pp.
1
19
.
3.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India’s Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
030801
.
4.
Elavarasan
,
R.
,
Shafiullah
,
G.
,
Manoj Kumar
,
N.
, and
Padmanaban
,
S.
,
2019
, “
A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives
,”
Energies
,
13
(
1
), p.
40
.
5.
de Oliveira Neto
,
G. C.
,
Pinto
,
L. F. R.
,
Amorim
,
M. P. C.
,
Giannetti
,
B. F.
, and
de Almeida
,
C. M. V. B.
,
2018
, “
A Framework of Actions for Strong Sustainability
,”
J. Cleaner Prod.
,
196
, pp.
1629
1643
.
6.
Asgharian
,
H.
, and
Baniasadi
,
E.
,
2019
, “
A Review on Modeling and Simulation of Solar Energy Storage Systems Based on Phase Change Materials
,”
J. Energy Storage
,
21
, pp.
186
201
.
7.
Senthil
,
R.
, and
Sundaram
,
P.
,
2018
, “
Improvement of the Thermal Energy Storage Capacity of a Parabolic Dish Concentrated Solar Receiver Using Phase Change Materials
,”
IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Advances in Mechanical Engineering (ICAME 2018)
, Vol.
402
,
Kattankulathur, India
,
Mar. 22–24
, pp.
1
8
.
8.
Saini
,
V.
,
Sahota
,
L.
,
Jain
,
V. K.
, and
Tiwari
,
G. N.
,
2019
, “
Performance and Cost Analysis of a Modified Built-in-Passive Condenser and Semitransparent Photovoltaic Module Integrated Passive Solar Distillation System
,”
J. Energy Storage
,
24
, p.
100809
.
9.
Hassabou
,
A.
,
Abotaleb
,
A.
, and
Abdallah
,
A.
,
2017
, “
Passive Thermal Management of Photovoltaic Modules—Mathematical Modeling and Simulation of Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061010
.
10.
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
11.
Huanga
,
C. Y.
,
Sunga
,
H. C.
, and
Yen
,
K. L.
,
2012
, “
Experimental Study of Photovoltaic/Thermal (PV/T) Hybrid System
,”
Int. J. Smart Grid Clean Energy
,
2
(
2
), pp.
148
151
.
12.
Singh
,
P.
, and
Ravindra
,
N. M.
,
2012
, “
Temperature Dependence of Solar Cell Performance—An Analysis
,”
Sol. Energy Mater. Sol. Cells
,
101
, pp.
36
45
.
13.
Mertens
,
K.
,
2014
,
Photovoltaics Fundamentals, Technology and Practice
, 2nd ed.,
John Wiley & Sons Ltd.
,
1
294
.
14.
Klugmann-Radziemska
,
E.
,
Wcisło
,
P.
,
Ryms
,
M.
, and
Denda
,
H.
,
2014
, “
The Possibility of Phase Change Materials (PCM) Usage to Increase Efficiency of the Photovoltaic Modules
,”
MATEC Web of Conferences, 101 EUROTHERM Seminar—Transport Phenomena in Multiphase Systems
, Vol.
18
,
Krakow, Poland
,
June 30–July 3
, p.
03008
.
15.
Nair
,
K. K.
,
Jose
,
J.
, and
Ravindran
,
A.
,
2016
, “
Analysis of Temperature Dependent Parameters on Solar Cell Efficiency Using MATLAB
,”
Int. J. Eng Dev. Res.
,
4
, pp.
537
541
.
16.
Singh
,
P.
,
Khanna
,
S.
,
Mudgal
,
V.
,
Newar
,
S.
,
Sharma
,
V.
,
Sundaram
,
S.
,
Reddy
,
K. S.
, et al
,
2021
, “
Three Dimensional Analysis of Dye-Sensitized, Perovskite and Monocrystalline Silicon Solar Photovoltaic Cells Under Non Uniform Solar Flux
,”
Appl. Therm. Eng.
,
182
, p.
115613
.
17.
Saadah
,
M.
,
Hernandez
,
E.
, and
Balandin
,
A.
,
2017
, “
Thermal Management of Concentrated Multi-Junction Solar Cells With Graphene-Enhanced Thermal Interface Materials
,”
Appl. Sci.
,
7
(
6
), p.
589
.
18.
Madurai Elavarasan
,
R.
,
Mudgal
,
V.
,
Selvamanohar
,
L.
,
Wang
,
K.
,
Huang
,
G.
,
Shafiullah
,
G. M.
,
Markides
,
C. N.
,
Reddy
,
K. S.
, and
Nadarajah
,
M.
,
2022
, “
Pathways Toward High-Efficiency Solar Photovoltaic Thermal Management for Electrical, Thermal and Combined Generation Applications: A Critical Review
,”
Energy Convers. Manage.
,
255
, p.
115278
.
19.
Chandel
,
S. S.
, and
Agarwal
,
T.
,
2017
, “
Review of Cooling Techniques Using Phase Change Materials for Enhancing Efficiency of Photovoltaic Power Systems
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
1342
1351
.
20.
Singh
,
P.
,
Elavarasan
,
R. M.
,
Kumar
,
N. M.
,
Khanna
,
S.
,
Becerra
,
V.
,
Newar
,
S.
,
Sharma
,
V.
,
Radulovic
,
J.
,
Khusainov
,
R.
, and
Hutchinson
,
D.
,
2021
, “
Photovoltaic Thermal Collectors With Phase Change Material for Southeast of England
,”
Proceedings of the 7th International Conference on Advances in Energy Research
,
Springer
,
Singapore
,
Dec. 10–12
, 2019, pp.
1425
1430
.
21.
Mahamudul
,
H.
,
Rahman
,
M. M.
,
Metselaar
,
H. S. C.
,
Mekhilef
,
S.
,
Shezan
,
S. A.
,
Sohel
,
R.
,
Karim
,
A.
,
Bin
,
S.
, and
Badiuzaman
,
W. N. I.
,
2016
, “
Temperature Regulation of Photovoltaic Module Using Phase Change Material: A Numerical Analysis and Experimental Investigation
,”
Int. J. Photoenergy
,
5917028
(
1–8
), pp.
1
8
.
22.
Kabeel
,
A. E.
,
El-Samadony
,
Y. A. F.
, and
El-Maghlany
,
W. M.
,
2018
, “
Comparative Study on the Solar Still Performance Utilizing Different PCM
,”
Desalination
,
432
, pp.
89
96
.
23.
Huang
,
M. J.
,
Eames
,
P. C.
,
Norton
,
B.
, and
Hewitt
,
N. J.
,
2011
, “
Natural Convection in an Internally Finned Phase Change Material Heat Sink for the Thermal Management of Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,
95
(
7
), pp.
1598
1603
.
24.
Hasan
,
A.
,
McCormack
,
S. J.
,
Huang
,
M. J.
,
Sarwar
,
J.
, and
Norton
,
B.
,
2015
, “
Increased Photovoltaic Performance Through Temperature Regulation by Phase Change Materials: Materials Comparison in Different Climates
,”
Sol. Energy
,
115
, pp.
264
276
.
25.
Mahamudul
,
H.
,
Silakhori
,
M.
,
Metselaar
,
I. H.
,
Ahmad
,
S.
, and
Mekhilef
,
S.
,
2014
, “
Development of a Temperature Regulated Photovoltaic Module Using Phase Change Material for Malaysian Weather Condition
,”
Optoelectron. Adv. Mater. Rapid Commun.
,
8
, pp.
1243
1245
.
26.
Khanna
,
S.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2018
, “
Effect of Climate on Electrical Performance of Finned Phase Change Material Integrated Solar Photovoltaic
,”
Sol. Energy
,
174
, pp.
593
605
.
27.
Singh
,
P.
,
Khanna
,
S.
,
Newar
,
S.
,
Sharma
,
V.
,
Reddy
,
K.
,
Mallick
,
T.
,
Becerra
,
V.
,
Radulovic
,
J.
,
Hutchinson
,
D.
, and
Khusainov
,
R.
,
2020
, “
Solar Photovoltaic Panels With Finned Phase Change Material Heat Sinks
,”
Energies
,
13
(
10
), p.
2558
.
28.
Khanna
,
S.
,
Newar
,
S.
,
Sharma
,
V.
,
Reddy
,
K. S.
,
Mallick
,
T. K.
,
Radulovic
,
J.
,
Khusainov
,
R.
,
Hutchinson
,
D.
, and
Becerra
,
V.
,
2019
, “
Electrical Enhancement Period of Solar Photovoltaic Using Phase Change Material
,”
J. Cleaner Prod.
,
221
, pp.
878
884
.
29.
Khanna
,
S.
,
Newar
,
S.
,
Sharma
,
V.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2019
, “
Optimization of Fins Fitted Phase Change Material Equipped Solar Photovoltaic Under Various Working Circumstances
,”
Energy Convers. Manage.
,
180
, pp.
1185
1195
.
30.
Singh
,
P.
,
Khanna
,
S.
,
Becerra
,
V.
,
Newar
,
S.
,
Sharma
,
V.
,
Mallick
,
T. K.
,
Hutchinson
,
D.
,
Radulovic
,
J.
, and
Khusainov
,
R.
,
2020
, “
Power Improvement of Finned Solar Photovoltaic Phase Change Material System
,”
Energy
,
193
, p.
116735
.
31.
Singh
,
P.
,
Mudgal
,
V.
,
Khanna
,
S.
,
Mallick
,
T. K.
, and
Reddy
,
K. S.
,
2020
, “
Experimental Investigation of Solar Photovoltaic Panel Integrated With Phase Change Material and Multiple Conductivity-Enhancing-Containers
,”
Energy
,
205
, p.
118047
.
32.
Al-Waeli
,
A. H. A.
,
Kazem
,
H. A.
,
Yousif
,
J. H.
,
Chaichan
,
M. T.
, and
Sopian
,
K.
,
2019
, “
Mathematical and Neural Network Models for Predicting the Electrical Performance of a PV/T System
,”
Int. J. Energy Res.
,
43
, pp.
8100
8117
.
33.
Grubišić-Čabo
,
F.
,
Nižetić
,
S.
,
Marinić Kragić
,
I.
, and
Čoko
,
D.
,
2019
, “
Further Progress in the Research of Fin-Based Passive Cooling Technique for the Free-Standing Silicon Photovoltaic Panels
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3475
3495
.
34.
Groulx
,
D.
, and
Biwole
,
P. H.
,
2014
, “
Solar PV Passive Temperature Control Using Phase Change Materials
,”
Proceedings of the 15th International Heat Transfer Conference
,
Kyoto, Japan
,
Aug. 10–15
, pp.
8187
8201
.
35.
Rajvikram
,
M.
, and
Sivasankar
,
G.
,
2019
, “
Experimental Study Conducted for the Identification of Best Heat Absorption and Dissipation Methodology in Solar Photovoltaic Panel
,”
Sol. Energy
,
193
, pp.
283
292
.
36.
Rajvikram
,
M.
,
Leoponraj
,
S.
,
Ramkumar
,
S.
,
Akshaya
,
H.
, and
Dheeraj
,
A.
,
2019
, “
Experimental Investigation on the Abasement of Operating Temperature in Solar Photovoltaic Panel Using PCM and Aluminium
,”
Sol. Energy
,
188
, pp.
327
338
.
37.
Khanna
,
S.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2017
, “
Performance Analysis of Tilted Photovoltaic System Integrated With Phase Change Material Under Varying Operating Conditions
,”
Energy
,
133
, pp.
887
899
.
38.
Waqas
,
A.
, and
Jie
,
J.
,
2018
, “
Effectiveness of Phase Change Material for Cooling of Photovoltaic Panel for Hot Climate
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041006
.
39.
Elavarasan
,
R.
,
Velmurugan
,
K.
,
Subramaniam
,
U.
,
Kumar
,
A.
, and
Almakhles
,
D.
,
2020
, “
Experimental Investigations Conducted for the Characteristic Study of OM29 Phase Change Material and Its Incorporation in Photovoltaic Panel
,”
Energies
,
13
(
4
), p.
897
.
40.
Abdollahi
,
N.
, and
Rahimi
,
M.
,
2020
, “
Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021003
.
41.
Chantawong
,
P.
,
2019
, “
Experimental Investigation of Thermal Performance of a Multipurpose PV Solar Collector Wall With Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
064501
.
42.
Kumar
,
L.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2022
, “
Real-Time Experimental Performance Assessment of a Photovoltaic Thermal System Cascaded With Flat Plate and Heat Pipe Evacuated Tube Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011004
.
43.
Senthil
,
R.
,
Madurai Elavarasan
,
R.
,
Pugazhendhi
,
R.
,
Premkumar
,
M.
,
Vengadesan
,
E.
,
Navakrishnan
,
S.
,
Islam
,
M. R.
, and
Natarajan
,
S. K.
,
2021
, “
A Holistic Review on the Integration of Heat Pipes in Solar Thermal and Photovoltaic Systems
,”
Sol. Energy
,
227
, pp.
577
605
.
44.
Patel
,
J. R.
,
Rathod
,
M. K.
,
Elavarasan
,
R. M.
, and
Said
,
Z.
,
2022
, “
Influence of Longitudinal Fin Arrangement on the Melting and Solidification Inside the Triplex Tube Latent Heat Thermal Storage System
,”
J. Energy Storage
,
46
, p.
103778
.
45.
Velmurugan
,
K.
,
Karthikeyan
,
V.
,
Korukonda
,
T. B.
,
Madhan
,
K.
,
Emsaeng
,
K.
,
Sukchai
,
S.
,
Sirisamphanwong
,
C.
, et al
,
2020
, “
Experimental Studies on PV Module Cooling With Radiation Source PCM Matrix
,”
IEEE Access
,
8
, pp.
145936
145949
.
46.
Pluss
, “
Technical Datasheet of HS29
,” https://www.pluss.co.in/upload/technical-datasheets/2019/Doc%20304_TDS%20HS29.pdf, Accessed March 3, 2022.
47.
Clegg
,
A.
, and
Dovaston
,
N.
,
2003
, “Conductors and Superconductors,”
Electrical Engineer’s Reference Book
,
Elsevier
,
New York
, pp.
5-1
5–13
.
48.
Sheasby
,
P. G.
, and
Piner
,
R.
,
2001
, “Introduction: Aluminium, Its Properties, Alloys and Finishes,”
The Surface Treatment and Finishing of Aluminum and Its Alloys
, 6th ed.,
Finishing Publications Ltd. and ASM International
, pp.
1
10
.
49.
Stojanovic
,
B.
,
Bukvic
,
М
, and
Epler
,
I.
,
2018
, “
Application of Aluminum and Aluminum Alloys in Engineering
,”
Appl. Eng. Lett.
,
3
(
2
), pp.
52
62
.
You do not currently have access to this content.