Abstract

This paper introduces the modeling and control of split-shaft drivetrains where the system’s inertia is adjusted to store the energy. Accordingly, a flywheel is mechanically coupled with the rotor of a doubly fed induction generator. The generator is driven by a split-shaft drivetrain that decouples the turbine’s shaft from the shaft of the generator to provide independent control of their angular velocities. Hence, the turbine controller can track the point of maximum power while the generator controller can adjust the generator speed. Accordingly, the flywheel, which is directly connected to the shaft of the generator, is charged and discharged by controlling the generator speed. In this process, the flywheel can modify the electric power generation of the generator on-demand. Since the drivetrain is a split-shaft, the turbine speed is not affected by this energy storing process. This improves the quality of injected power to the grid. The structure of the flywheel energy storage can be simplified by removing its dedicated motor/generator and the power electronics driver. This significant modification can only occur in the split-shaft drivetrain. Two separate supervisory controllers are developed in the form of fuzzy logic regulators to generate a real-time output power reference. Furthermore, small-signal models are developed to analyze and improve the maximum power point tracking controller. Extensive simulation results demonstrate the feasibility of such a system and its improved quality of power generation.

References

1.
Artigao
,
E.
,
Martín-Martínez
,
S.
,
Honrubia-Escribano
,
A.
, and
Gómez-Lázaro
,
E.
,
2018
, “
Wind Turbine Reliability: A Comprehensive Review Towards Effective Condition Monitoring Development
,”
Appl. Energy
,
228
, pp.
1569
1583
.
2.
Carroll
,
J.
,
McDonald
,
A.
, and
McMillan
,
D.
,
2016
, “
Failure Rate, Repair Time and Unscheduled O&M Cost Analysis of Offshore Wind Turbines
,”
Wind Energy
,
19
(
6
), pp.
1107
1119
.
3.
Hu
,
W.
,
Pryor
,
S. C.
,
Letson
,
F.
, and
Barthelmie
,
R. J.
,
2017
, “
Use of Seismic Analyses for the Wind Energy Industry
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051007
.
4.
Ma
,
Z.
,
Liu
,
Y.
,
Wang
,
D.
,
Teng
,
W.
, and
Kusiak
,
A.
,
2017
, “
Cyclostationary Analysis of a Faulty Bearing in the Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031006
.
5.
Echavarria
,
E.
,
Hahn
,
B.
,
Van Bussel
,
G.
, and
Tomiyama
,
T.
,
2008
, “
Reliability of Wind Turbine Technology Through Time
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031005
.
6.
Stehly
,
T. J.
, and
Beiter
,
P. C.
,
2020
, “
2018 Cost of Wind Energy Review
,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
7.
Qin
,
C.
,
Innes-Wimsatt
,
E.
, and
Loth
,
E.
,
2016
, “
Hydraulic-Electric Hybrid Wind Turbines: Tower Mass Saving and Energy Storage Capacity
,”
Renewable Energy
,
99
, pp.
69
79
.
8.
Roggenburg
,
M.
,
Esquivel-Puentes
,
H. A.
,
Vacca
,
A.
,
Bocanegra Evans
,
H.
,
Garcia-Bravo
,
J. M.
,
Warsinger
,
D. M.
,
Ivantysynova
,
M.
, and
Castillo
,
L.
,
2020
, “
Techno-Economic Analysis of a Hydraulic Transmission for Floating Offshore Wind Turbines
,”
Renewable Energy
,
153
, pp.
1194
1204
.
9.
Deldar
,
M.
,
Izadian
,
A.
, and
Anwar
,
S.
,
2019
, “
A Decentralized Multivariable Controller for Hydrostatic Wind Turbine Drivetrain
,”
Asian J. Control
,
22
(
3
), pp.
1038
1051
.
10.
Schmitz
,
J.
,
Vukovic
,
M.
, and
Murrenhoff
,
H.
,
2013
, “
Hydrostatic Transmission for Wind Turbines: An Old Concept, New Dynamics
,”
ASME/BATH 2013 Symposium on Fluid Power and Motion Control
,
Sarasota, FL
,
Oct. 6–9
, ASME, p.
V001T01A029
.
11.
Deldar
,
M.
,
Izadian
,
A.
, and
Anwar
,
S.
,
2015
, “
Reconfiguration of a Wind Turbine With Hydrostatic Drivetrain to Improve Annual Energy Production
,”
2015 IEEE Energy Conversion Congress and Exposition (ECCE)
,
Montreal, QC, Canada
,
Sept. 20–24
, IEEE, pp.
6660
6666
.
12.
Cavallo
,
A. J.
,
2001
, “
Energy Storage Technologies for Utility Scale Intermittent Renewable Energy Systems
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
387
389
.
13.
Gielen
,
D.
,
Boshell
,
F.
,
Saygin
,
D.
,
Bazilian
,
M. D.
,
Wagner
,
N.
, and
Gorini
,
R.
,
2019
, “
The Role of Renewable Energy in the Global Energy Transformation
,”
Energy Strategy Rev.
,
24
, pp.
38
50
.
14.
Howlader
,
A. M.
,
Urasaki
,
N.
,
Yona
,
A.
,
Senjyu
,
T.
, and
Saber
,
A. Y.
,
2013
, “
A Review of Output Power Smoothing Methods for Wind Energy Conversion Systems
,”
Renewable Sustainable Energy Rev.
,
26
, pp.
135
146
.
15.
Chowdhury
,
M. A.
,
Hosseinzadeh
,
N.
, and
Shen
,
W. X.
,
2012
, “
Smoothing Wind Power Fluctuations by Fuzzy Logic Pitch Angle Controller
,”
Renewable Energy
,
38
(
1
), pp.
224
233
.
16.
Gholami
,
M.
,
Fathi
,
S. H.
,
Milimonfared
,
J.
, and
Chen
,
Z.
,
2019
, “
Improving Power Smoothing and Performance of Pitch Angle System for Above Rated Speed Range in Wind Power Systems
,”
IET Gener. Transm. Distrib.
,
13
(
3
), pp.
409
416
.
17.
Howlader
,
A. M.
,
Urasaki
,
N.
,
Senjyu
,
T.
,
Uehara
,
A.
,
Yona
,
A.
, and
Saber
,
A.
,
2010
, “
Output Power Smoothing of Wind Turbine Generation System for the 2-MW Permanent Magnet Synchronous Generators
,”
2010 International Conference on Electrical Machines and Systems
,
Incheon, South Korea
,
Oct. 10–13
, IEEE, pp.
452
457
.
18.
Luo
,
C.
,
Banakar
,
H.
,
Shen
,
B.
, and
Ooi
,
B.-T.
,
2007
, “
Strategies to Smooth Wind Power Fluctuations of Wind Turbine Generator
,”
IEEE Trans. Energy Convers.
,
22
(
2
), pp.
341
349
.
19.
Ran
,
L.
,
Bumby
,
J.
, and
Tavner
,
P.
,
2004
, “
Use of Turbine Inertia for Power Smoothing of Wind Turbines With a DFIG
,”
Proceedings of the 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No. 04EX951)
,
Lake Placid, NY
,
Sept. 12–15
, IEEE, pp.
106
111
.
20.
Senjyu
,
T.
,
Ochi
,
Y.
,
Kikunaga
,
Y.
,
Tokudome
,
M.
,
Muhando
,
E. B.
,
Yona
,
A.
, and
Funabashi
,
T.
,
2008
, “
Output Power Leveling of Wind Generation System Using Inertia of Wind Turbine
,”
Proceedings of the IEEE International Conference on Sustainable Energy Technologies
,
Singapore
,
Nov. 24–27
, IEEE, pp.
1217
1222
.
21.
Uehara
,
A.
,
Pratap
,
A.
,
Goya
,
T.
,
Senjyu
,
T.
,
Yona
,
A.
,
Urasaki
,
N.
, and
Funabashi
,
T.
,
2011
, “
A Coordinated Control Method to Smooth Wind Power Fluctuations of a PMSG-Based WECS
,”
IEEE Trans. Energy Convers.
,
26
(
2
), pp.
550
558
.
22.
Cimuca
,
G. O.
,
Saudemont
,
C.
,
Robyns
,
B.
, and
Radulescu
,
M. M.
,
2006
, “
Control and Performance Evaluation of a Flywheel Energy-Storage System Associated to a Variable-Speed Wind Generator
,”
IEEE Trans. Ind. Electron.
,
53
(
4
), pp.
1074
1085
.
23.
Jerbi
,
L.
,
Krichen
,
L.
, and
Ouali
,
A.
,
2009
, “
A Fuzzy Logic Supervisor for Active and Reactive Power Control of a Variable Speed Wind Energy Conversion System Associated to a Flywheel Storage System
,”
Electr. Power Syst. Res.
,
79
(
6
), pp.
919
925
.
24.
Leclercq
,
L.
,
Robyns
,
B.
, and
Grave
,
J.-M.
,
2003
, “
Control Based on Fuzzy Logic of a Flywheel Energy Storage System Associated With Wind and Diesel Generators
,”
Math. Comput. Simul.
,
63
(
3–5
), pp.
271
280
.
25.
Suvire
,
G. O.
, and
Mercado
,
P. E.
,
2012
, “
Active Power Control of a Flywheel Energy Storage System for Wind Energy Applications
,”
IET Renew. Power Gener.
,
6
(
1
), pp.
9
16
.
26.
Díaz-González
,
F.
,
Sumper
,
A.
,
Gomis-Bellmunt
,
O.
, and
Villafáfila-Robles
,
R.
,
2012
, “
A Review of Energy Storage Technologies for Wind Power Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2154
2171
.
27.
Doucette
,
R. T.
, and
McCulloch
,
M. D.
,
2011
, “
A Comparison of High-Speed Flywheels, Batteries, and Ultracapacitors on the Bases of Cost and Fuel Economy as the Energy Storage System in a Fuel Cell Based Hybrid Electric Vehicle
,”
J. Power Sources
,
196
(
3
), pp.
1163
1170
.
28.
Xisheng
,
T.
, and
Zhiping
,
Q.
,
2012
, “
Energy Storage Technologies and Control Methods of Microgrid: A Survey
,”
Acta Energ. Sol. Sin.
,
33
(
3
), pp.
517
524
.
29.
Diaz-Gonzalez
,
F.
,
Bianchi
,
F. D.
,
Sumper
,
A.
, and
Gomis-Bellmunt
,
O.
,
2014
, “
Control of a Flywheel Energy Storage System for Power Smoothing in Wind Power Plants
,”
IEEE Trans. Energy Convers.
,
29
(
1
), pp.
204
214
.
30.
Akbari
,
R.
, and
Izadian
,
A.
,
2020
, “
Reduced-Size Converter in DFIG-Based Wind Energy Conversion System
,”
Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE)
,
Detroit, MI
,
Oct. 11–15
, IEEE, pp.
4217
4223
.
31.
Akbari
,
R.
,
Izadian
,
A.
, and
Weissbach
,
R. S.
,
2021
, “
Quasi Self-Excited DFIG-Based Wind Energy Conversion System
,”
IEEE Trans. Ind. Appl.
,
57
(
3
), pp.
2816
2824
.
32.
Taherian-Fard
,
E.
,
Sahebi
,
R.
,
Niknam
,
T.
,
Izadian
,
A.
, and
Shasadeghi
,
M.
,
2020
, “
Wind Turbine Drivetrain Technologies
,”
IEEE Trans. Ind. Appl.
,
56
(
2
), pp.
1729
1741
.
33.
Aguglia
,
D.
,
Cros
,
J.
,
Viarouge
,
P.
, and
Wamkeue
,
R.
,
2011
, “Optimal Selection of Drive Components for Doubly-Fed Induction Generator Based Wind Turbines,”
Wind Turbines
,
INTECH Open Access Publisher
, Chap. 25.
34.
Abdullah
,
M. A.
,
Yatim
,
A. H. M.
,
Tan
,
C. W.
, and
Saidur
,
R.
,
2012
, “
A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3220
3227
.
35.
Nasiri
,
M.
,
Milimonfared
,
J.
, and
Fathi
,
S. H.
,
2014
, “
Modeling, Analysis and Comparison of TSR and OTC Methods for MPPT and Power Smoothing in Permanent Magnet Synchronous Generator-Based Wind Turbines
,”
Energy Convers. Manage.
,
86
, pp.
892
900
.
36.
Akbari
,
R.
,
Izadian
,
A.
, and
Weissbach
,
R.
,
2019
, “
An Approach in Torque Control of Hydraulic Wind Turbine Powertrains
,”
Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE)
,
Baltimore, MD
,
Sept. 29–Oct. 3
, IEEE, pp.
979
982
.
37.
Jia
,
F.
,
Cai
,
X.
, and
Li
,
Z.
,
2018
, “
Fluctuating Characteristic and Power Smoothing Strategies of WECS
,”
IET Gener. Transm. Distrib.
,
12
(
20
), pp.
4568
4576
.
You do not currently have access to this content.