Abstract

This paper describes the design methodology for a novel Fresnel lens. The original Fresnel lens is obtained from a plano-convex lens, whose spherical surface is split into a number of divisions (called facets), collapsed onto the flat base. Thus, all the facets of the original Fresnel lens have the same radius as that of the plano-convex lens. The proposed design aims to achieve better ray concentration and reduced spherical aberration than the original Fresnel lens by constructing spherical facets with unequal radii. The centers and radii of facets are constrained so that the ray refracted from the bottom vertex of each facet on one side of the optical axis and the ray refracted from the outer vertex of the corresponding facet on the other side of the optical axis must intersect at the focal plane. The proposed lens design has resulted in a 275% gain in the concentration ratio and a 72.5% reduction in the spherical aberration compared to the original lens of the same aperture diameter and number of facets. The performance of both novel and original Fresnel lenses when used as solar concentrators with a conical coil receiver is evaluated. The novel Fresnel lens led to increased heat gain and resulted in a compact solar collector design.

References

1.
Awasthi
,
K.
,
Reddy
,
D. S.
, and
Khan
,
M. K.
,
2020
, “
Design of Fresnel Lens With Spherical Facets for Concentrated Solar Power Applications
,”
Int. J. Energy Res.
,
44
(
1
), pp.
460
472
.
2.
O'Neill
,
M. J.
Bi-focussed Solar Energy Concentrator. Entech Inc. 1985; U.S. Patent No. 4,545,366
.
3.
Claytor
,
R. N.
Fresnel Lens With Aspiteric Grooves. Fresnel Tech Inc. 1988; U.S. Patent No. 4,787,722
.
4.
Jebens
,
R. W.
Fresnel Lens Concentrator. General Electric Co., 1989; U.S. Patent 4,799,778
.
5.
Appeldorn
,
R. H.
Refracting Solar Energy Concentrator and THIN FLEXIBLE FRESNEL LENS. 3M Co. 1989; U.S. Patent No. 4,848,319
.
6.
Vanderwerf
,
D. F.
Dual Grooved Fresnel Lens for Overhead Projection. 3M Co. 1990; U.S. Patent No. 4,900,129
.
7.
Pasco
,
I. K.
Fresnel Lens. Combined Optical Industries Ltd. 1992; U.S. Patent No. 5,151,826
.
8.
Destain
,
P.
Fresnel Lens Combination. 3M Innovative Properties Co. 2007; U.S. Patent Application No. 11/322,981
.
9.
Amano
,
T.
, and
Nakamura
,
T.
Fresnel Lens. 3M Innovative Properties Co. 2010; U.S. Patent No. 7,701,648
.
10.
Foo
,
O. F.
Fresnel Lens Sheet And Luminaire Using The Same. Mass Technology (HK) Ltd., 2011; U.S. Patent Application No. 12/860,931
.
11.
Fornari
,
L. S.
, and
Fraelich
,
M. R.
Fresnel Lens Array With Novel Lens Element Profile. Fresnel Tech Inc., 2015; U.S. Patent No. 9,097,841
.
12.
Levine
,
D. V.
Tunable-Focus Thin Electronic Lens. Northrop Grumman Systems Corp., 2016; U.S. Patent No. 9,335,569
.
13.
Tilleman
,
M. M.
Arched Collimating Lens Forming a Disk-Like Illumination. Rockwell Automation Technologies Inc., 2019; U.S. Patent No. 10,436,953
.
14.
Kritchman
,
E. M.
,
Friesem
,
A. A.
, and
Yekutieli
,
G.
,
1979
, “
Highly Concentrating Fresnel Lenses
,”
Appl. Opt.
,
18
(
15
), pp.
2688
2695
.
15.
Vannucci
,
G.
,
1986
, “
A “Tuned” Fresnel Lens
,”
Appl. Opt.
,
25
(
16
), pp.
2831
2834
.
16.
Erismann
,
F.
,
1997
, “
Design of a Plastic Aspheric Fresnel Lens With a Spherical Shape
,”
Opt. Eng.
,
36
(
4
), pp.
988
992
.
17.
Yeh
,
N.
,
2009
, “
Optical Geometry Approach for Elliptical Fresnel Lens Design and Chromatic Aberration
,”
Sol. Energy Mater. Sol. Cells
,
93
(
8
), pp.
1309
1317
.
18.
Zheng
,
H.
,
Feng
,
C.
,
Su
,
Y.
,
Dai
,
J.
, and
Ma
,
X.
,
2014
, “
Design and Experimental Analysis of a Cylindrical Compound Fresnel Solar Concentrator
,”
Sol. Energy
,
107
, pp.
26
37
.
19.
Gupta
,
P. K.
,
1981
, “
Theoretical Analysis of the Fresnel Lens as a Function of Design Parameters
,”
Appl. Energy
,
9
(
4
), pp.
301
310
.
20.
Gupta
,
P. K.
,
1981
, “
Efficiency of Fresnel Lenses
,”
Appl. Energy
,
9
(
3
), pp.
173
183
.
21.
Gupta
,
P. K.
,
1982
, “
Efficiency of Fresnel Lenses With Respect to Thermal Losses
,”
Appl. Energy
,
12
(
2
), pp.
87
98
.
22.
Singhal
,
A. K.
,
Singh
,
R. N.
,
Kandpal
,
T. C.
, and
Mathur
,
S. S.
,
1982
, “
Optical Design and Performance Characteristics of an Inverted 'Vee'-Type Fresnel Lens
,”
Appl. Energy
,
11
(
2
), pp.
151
165
.
23.
Ma
,
X.
,
Jin
,
R.
,
Liang
,
S.
,
Liu
,
S.
, and
Zheng
,
H.
,
2020
, “
Analysis on an Optimal Transmittance of Fresnel Lens as Solar Concentrator
,”
Sol. Energy
,
207
, pp.
22
31
.
24.
Ferriere
,
A.
,
Rodríguez
,
G. P.
, and
Sobrino
,
J. A.
,
2004
, “
Flux Distribution Delivered by a Fresnel Lens Used for Concentrating Solar Energy
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
654
660
.
25.
Wang
,
G.
,
Chen
,
Z.
,
Hu
,
P.
, and
Cheng
,
X.
,
2016
, “
Design and Optical Analysis of the Band-Focus Fresnel Lens Solar Concentrator
,”
Appl. Therm. Eng.
,
102
, pp.
695
700
.
26.
Xu
,
N.
,
Ji
,
J.
,
Sun
,
W.
,
Huang
,
W.
,
Li
,
J.
, and
Jin
,
Z.
,
2016
, “
Numerical Simulation and Experimental Validation of a High Concentration Photovoltaic/Thermal Module Based on Point-Focus Fresnel Lens
,”
Appl. Energy
,
168
, pp.
269
281
.
27.
Shen
,
C.
,
Lv
,
G.
,
Wei
,
S.
,
Zhang
,
C.
, and
Ruan
,
C.
,
2020
, “
Investigating the Performance of a Novel Solar Lighting/Heating System Using Spectrum-Sensitive Nanofluids
,”
Appl. Energy
,
270
, pp.
115
208
.
28.
Chen
,
J.
,
Xu
,
H. T.
,
Wang
,
Z. Y.
, and
Han
,
S. P.
,
2018
, “
Thermal Performance Study of a Water Tank for a Solar System With a Fresnel Lens
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051005
.
29.
Soni
,
V. K.
,
Shrivastava
,
R. L.
,
Untawale
,
S. P.
, and
Shrivastava
,
K.
,
2019
, “
Performance Analysis and Optimization of Fresnel Lens Concentrated Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031010
.
30.
Köysal
,
Y.
,
Özdemir
,
A. E.
, and
Atalay
,
T.
,
2018
, “
Experimental and Modeling Study on Solar System Using Linear Fresnel Lens and Thermoelectric Module
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061003
.
31.
Wang
,
H.
,
Huang
,
J.
,
Song
,
M.
, and
Yan
,
J.
,
2019
, “
Effects of Receiver Parameters on the Optical Performance of a Fixed-Focus Fresnel Lens Solar Concentrator/Cavity Receiver System in Solar Cooker
,”
Appl. Energy
,
237
, pp.
70
82
.
32.
Xie
,
W. T.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2012
, “
Theoretical and Experimental Analysis on Efficiency Factors and Heat Removal Factors of Fresnel Lens Solar Collector Using Different Cavity Receivers
,”
Sol. Energy
,
86
(
9
), pp.
2458
2471
.
33.
Sharma
,
M. K.
, and
Bhattacharya
,
J.
,
2020
, “
A Novel Stationary Concentrator to Enhance Solar Intensity With Absorber-Only Single Axis Tracking
,”
Renewable Energy
,
154
, pp.
976
985
.
34.
Wendelin
,
T.
,
2003
, “
SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics
,”
International Solar Energy Conference
,
Kohala Coast, HI
,
Mar. 15–18
, pp.
253
260
.
35.
Craig
,
K. J.
,
Slootweg
,
M.
,
Le Roux
,
W. G.
,
Wolff
,
T. M.
, and
Meyer
,
J. P.
,
2020
, “
Using CFD and Ray Tracing to Estimate the Heat Losses of a Tubular Cavity Dish Receiver for Different Inclination Angles
,”
Sol. Energy
,
211
, pp.
1137
1158
.
36.
Moghimi
,
M. A.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2015
, “
A Novel Computational Approach to Combine the Optical and Thermal Modelling of Linear Fresnel Collectors Using the Finite Volume Method
,”
Sol. Energy
,
116
, pp.
407
427
.
37.
Moghimi
,
M. A.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2015
, “
Optimization of a Trapezoidal Cavity Absorber for the Linear Fresnel Reflector
,”
Sol. Energy
,
119
, pp.
343
361
.
38.
Awasthi
,
K.
, and
Khan
,
M. K.
,
2019
, “
Performance Evaluation of Coiled Tube Receiver Cavity for a Concentrating Collector
,”
Renewable Energy
,
138
, pp.
666
674
.
39.
Reddy
,
D. S.
,
Khan
,
M. K.
, and
Awasthi
,
K.
,
2020
, “
Thermohydraulic Performance of a Novel Curved Serpentine Coil
,”
Phys. Fluids
,
32
(
8
), p.
083609
.
You do not currently have access to this content.